bt

Network + Security + Cloud

FROM SEOUL TO SONY:

THE HISTORY OF THE DARKSEOUL GROUP
AND THE SONY INTRUSION MALWARE
DESTOVER

By Snorre Fagerland, Blue Coat Systems Inc.

February 2016

EXECUTIVE SUMMARY

The attack on Sony Pictures Entertainment in November 2014 was not a single incident. Through technical
indicators, we connect the attack to several destructive events going back to at least 2009.

The identity of the perpetrators is unknown, but several of these previous events have been attributed by others to
North Korean threat actors. In this report, we show how we have connected these events to the threat actors
known as DarkSeoul or Silent Chollima.

Whoever they are, this group is still active, mainly going after South Korean targets in several sectors. Malware
belonging to this threat complex has apparently been produced as late as January 2016.

We detail the evolution of some of the most common tools used by these attackers and present indicators of
compromise and mitigation information where we can.

In parallel with this report, the security company Novetta is publishing its own independent research covering the
same threat complex. This report is available from http://operationblockbuster.com.

http://operationblockbuster.com/

INTRODUCTION

Much has been written about the Sony hack. However, hard data has not been as plentiful. In an attempt to
provide additional insight, we detail some facts about the malware reportedly used in the attack, and attempt to
draw lines to other malware and incidents, beyond the mere speculative.

In order to expand the case, we will look at a variety of evidence. In most cases, we will not settle for one single
factor as the basis for assessments, but instead correlate information of different kinds. Factors that we will include
are for example:

e Obfuscation methods

e Code structure

e Text strings, such as encryption keys
e Known localization

e Digital code signing certificates

Details about the different indicators are included in the appendixes.

Acknowledgements

A big thank you goes out to all who helped with this paper — notably Waylon Grange, always an invaluable source of
insight and information, and the good folks over at Farsight Security who gracefully provided passive DNS data.

MALWARE KNOWN TO BE CONNECTED WITH THE SONY CASE

To start at the beginning: The official statements from the FBI (1) and US-CERT (2) mention the md5 hashes of the
following set of malware files:

d1c27ee7cel8675974edf42d4eea25c6 (dropper)
760c35a80d758f032d02cf4db12d3e55 (wiper)
el864a55d5cch76af4bf7a0ael6279ba (web server)
€904bf93403c0fb08b9683a9e858c73e (backdoor)

In the weeks following the attack, a number of other malware instances came to light that were obviously
connected; such as

2618dd3e5¢59ca851f03df12c0cab3b8 (SMB worm)
b80aa583591eaf758fd95ab4ea7afe39 (wiper)
6467c6df4bad526c7f7a7bc950bd47eb (backdoor)

Most vendors now use the name Destover for a group of malware that was part of the Sony intrusion. Though
many pieces of malware are somewhat different, we’ll use that name as well to avoid confusion.

The US-CERT advisory also mentions the import hashes of a number of other malware. These are non-unique
indicators, but can help in locating related samples.

A NOTE ABOUT THE HANGUL WORD PROCESSOR (*.HWP, HWPX) FORMAT

The Hangul Word Processor is software developed by the Korean company Hancom. It is similar in usage area to
Microsoft Word, but is specifically adapted to the Korean written language Hangul.

The file format used by this software is also somewhat similar to Microsoft Word, with the use of OLE2-based
documents for previous versions of HWP, and ZIP archive-based documents for newer versions.

A number of vulnerabilities have existed for these formats. These have been used maliciously by several different
threat actors over time, also by the threat actors mentioned in this paper.

MALWARE ARCHEOLOGY

As research into this case progressed, it became obvious that we were tracing malware relationships back in time.
In fact, the earliest indicators we’ve found go all the way back to at least 2009.

Around this time a malware development project started that would become the backbone of intrusions and
destructive attacks against mainly South Korean targets for years to come. In fact, modern-day malware from the
same threat actor still contains traces of this first eo-malware. The initial starting points were likely publicly
available source codes for Rbot and Mydoom, found on Chinese code sharing sites like Programmers United
Develop Net (PUDN).

There is no universally adopted naming for the early generations of this family in the AV industry. Usually they are
detected as Dllbot or Npkon, but these names can also cover other families, thus our use of a different name in this
paper - KorDllbot.

We will cover the evolution of KorDllbots and related malware, and how these came to be involved in various
intrusion cases.

TIMELINE OF LIKELY DARKSEOUL-RELATED ATTACKS

2009

2010

Koredos

2011

2012

Joongang llbo attack

DarkSeoul

2013 KorHigh

2014

Sony Intrusion

2015

2016

A timeline of destructive intrusions in or related to the Korean peninsula.

THE KORDLLBOT BACKDOOR FAMILY

KorDllbot is a family of small/medium size trojans that usually are configured to be installed as services.

Samples can vary a great deal in functionality - from just listening on a port and accepting commands, to harvesting

data, to actively spreading over SMB. This functionality seems almost modular, using different encryption and

encoding methods and different C&C command words. Build environment for the early generations was typically

Visual Studio 6.

int _ cdecl KorDllbot_ DeleteFile{int a1, LPCSTR 1pFileName)

int result; // eax@2

if { DeleteFileA{lpFileMame))

int _ cdecl KorDllbot2_ DeleteFile{const CHAR =a1)
{
int result; ff eax@?

if { DeleteFilen{al))}

result = KorDllbot SendStatus{ai, @x1E27, 8); result = KorDllbot2_ SendStatus{s_socket, Bx28118512, 8);
else else
result = KorDllbot__ SendStatus(al, 6x1E28, 8); result = KorDllbot2_ SendStatus{s_socket, 8x28118513, 8);
return result; return result;
it H
int _ cdecl KorDllbot3_ DeleteFile(const CHAR xal) int _ cdecl KorDllboth_ DeleteFile{const CHAR #*a1)
¢ {
int result; /7 eax@2 int result; // eax@2
if { DeleteFileA{al))} if { DeleteFilea{ad))
result = KorDllbot3_ SendStatus(s_socket, 0x4273461, 8); result = KorDllboths SendStatus{s_socket, Bx34567811, 8);
else else
result = KorD1llbot3_ SendStatus(s_socket, Bx4273462, @); result = KorDllbotd SendStatus{s_socket, Bx34567812, @8);

return result;
H

return result;

H

KorDllbots use C&C commands starting at different integer offsets depending on version. Here, versions 1.1/1.2/1.5,
1.03, 1.04.2 and 1.05.2 sending success or error status back to remote control client after file deletion.

Common capability seen in the KorDllIbot family is:

- Get bot status

- List logical drives

- List directory

- Change directory

- Get process list

- Kill process

- Execute file

- Delete file

- Change file time

- Execute shell command
- Download file

- Upload file

- Get volume serial number
- Get file attributes

Most of these trojans use encrypted or encoded C&C communication, but the algorithms vary between versions.

A very common trait in these bots is for API’s to be dynamically declared through the use of LoadLibrary and
GetProcAddress, where the APl names are obfuscated, encoded or encrypted in some way, and decoded before
they are declared. This is not unique to KorDllbots, but is a fairly static common behavior for this family.

Another trait which is peculiar enough to be an identifier in itself is the way this malware creates command line
statements. The construction of the command line is deliberately obfuscated by concatenating string segments.
Typically, this looks something like this:

n u

sprintf(commandline, “%sd.e%sc %s >%s 2>&1”, “cm”, “xe /”, command, logfile_name);

//command and tempfile_name are arbitrary strings inserted by the malware.

This translates to “cmd.exe /c command>logfile_name 2>&1”, i.e execute command and direct output to a log file.
This particular construct, with very little deviation, is used in almost all KorDllIbots and its successors. We’'ll
reference this by the name “CMXE” string obfuscation later on in the paper.

The earliest KorDllbot we have has a compile timestamp of July 1st. 2007. This date is however possible to falsify.
The earliest verified time KorDllbots were observed was mid-2011, with the executable with the sha256 hash of
87bae4517ff40d9a8800badd2fa8d2f9df3c2e224e97c4b3c162688f2b0d832e. This sample listens for connections on
port 179 and allows remote access through an encoded proprietary protocol.

Already here we can note a connection to the Sony case. Current antivirus detection of this file includes the
names Destover and Escad, names introduced by AV vendors in connection with the Sony attack. It has a compile
date (May 17th 2011) and import hash that matches data from the US-CERT advisory (2).

This malware contains a very noticeable API string obfuscation algorithm where API strings have been broken up
into segments of varying size using either spaces or dots as filler. This is presumably done to avoid detection by
anti-malware solutions or YARA rules. We have called this technique Chopstring, just to have a reference later on.
ChopString is used by many KorDllbots, and also shows up elsewhere in the Sony intrusion case.

Uir . - . tual FreeE Writ. eProce
nDi.pre o Ge tS emDi. vy WG 1. . Ti me

“h. ind

Chopstring’ed strings inside malware.

As far as we know, this exact method is not in widespread use in the underground or shared between threat actors.
These APIs are reconstructed before use by calling special string-deobfuscation functions early in the execution of
the program. For details about this and other algorithms, see the Appendix.

However, there is another interesting trait of this particular sample, and that is its digital signature.

THE MicrosoftCodeSigningPCA CERTIFICATE CLUSTER

The KorDllIbot sample 87bae4517ff40d9a8800badd2fa8d2f9df3c2e224e97c4b3c162688f2b0d832e is digitally
signed using a non-original (and thus non-validating) Microsoft certificate. The file is in reality self-signed.

General |De13ils | Certification F‘aﬁ'||

.j'éf}]g Certificate Information

This CA Root certificate is not trusted. To enable trust,
install this certificate in the Trusted Root Certification
Authorities store.

Issued to: Microsoft Code Signing PCA

Issued by: Microsoft Code Signing PCA

Valid from 5/ 17/ 2011 to 1/ 1/ 2040

This signature doesn’t say much about who made it. However, the way the certificate is constructed is peculiar.
The faked issuer in this case is Microsoft Code Signing PCA. The real Microsoft Code Signing PCA is one of the
certificate authorities used by Microsoft to sign their software.

The Subject - i.e. the entity the certificate is supposed to have been issued to - is also Microsoft Code Signing PCA.
This is a construct never seen in legitimate certifications, and it is rare enough in faked certificates that it’s
worthwhile checking other malware signed in this way.

Blue Coat maintains a database of code signing certificates which we can mine for this type of information.

Certificate Index. || Search Programs Subjects Morelnfos Links Errors
« Where | Issuer =] comains =] Microsoft Code Signing| _Remove
* Where | Subject ~| contains | Microsott Code Signing| _Remove

AddMore | Search

2] 3 a4 5 |next Last Show 250 | entries

Certificate ID - SerialNr Subject Program Issuer Morelnfo Validates e Times Seen &
3D348A74AABSISID422DATFAD24BECEC Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
03C64293830F4CBF43666B3901002332 Microsoft Code Signing PCA Micresoft Code Signing PCA CERT_E_UNTRUSTEDROOT
09B075A5393E93A3479A00051714DES2 _ Microsoft Code Sighing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
1752294 1AB0C25AB4CICFESF28D9361F Microsoft Code Signing PCA Micrasoft Code Signing PCA CERT_E_UNTRUSTEDROQT
9D0SS0E00B6D5DAS407E28BCA4336CCS Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
E7D382FB2E1EA4A44ASD193F4014E514 soft Code Signing PCA Micresoft Code Signing PCA CERT_E_UNTRUSTEDROOT
14CCFAO756059E93469BFEFE09350999 Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
C23DB473C335155A435B5C920B8961571 Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
A02625C39812B63A4A0555245A0314B Microsoft Code Signing PCA. Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
F487C2CFD330CFBEAFS171672D99CECD Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
E4046A19EFB6378A43907279D072E5FB Microsoft Code Signing PCA. Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
33FEC3FIBIDF618949EDE76422818881 Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
DEB5322CB067A1AA41AFS4C2DES7FBO3 Microsoft Code Signing PCA Micreseft Code Signing PCA CERT_E_UNTRUSTEDROOQT

DDE039353663CDB14:

7E6793CAZABCF Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT

940888706C199A9342EFBSEBEOFECBEBE Microsoft Cade Signing PCA Micresoft Code Signing PCA CERT_E_UNTRUSTEDROOT
7940954B304AA1AC4D2D64E65788350D Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEGROOT
328EBFBSF3ECABEG4FEAFOEBOABZID0T Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
7301505ED41ADAIA4BI79ISBEDEABETE7 Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
FOEEAE68CA747C804B6A1D078525EBD1 Microsoft Code Signing PCA Microsoft Code Signing PCA UNTRUSTEGROOT
61FDIDCOAI4FIASFAFFEBE2B6BS165C2 Microsoft Code Signing PCA Microsoft Code Signing PCA UNTRUSTEGROOT
00F70A8387C9FBBSAEATAESBBC14CE09 Microsoft Code Signing PCA Microsoft Code Signing PCA UNTRUSTEDROOT
B46DAFS1CDT66FAAGST311BEACD43847 Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
10CC28FOB769ABAE4FEELAOCDE40122F Microsoft Code Signing PCA Microseft Code Signing PCA CERT_E_UNTRUSTEDROOT
DB8C962C5CE366654FIB0S2DABS2DS4A Microsoft Code Signing PCA Microseft Code Signing PCA CERT_E_UNTRUSTEDROOT
206F156F15BB3C814F24BEBFEIECOACT Microsoft Code Signing PCA Microseft Code Signing PCA CERT_E_UNTRUSTEDROOT
7C4A1D98042A20814CIIEBDEFTBEEGFE Microsoft Code Signing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEDROOT
888BA4E41CDEB9A14EE48B20BE87428E Microsoft Code Sianing PCA Microsoft Code Signing PCA CERT_E_UNTRUSTEGROOT

We found several certificate serial numbers matching this pattern. Each serial number identifies a certificate used
to sign a small number of malware samples — typically on the range of one to four samples, with one outlier at eight
samples.

The malware can be clustered into a few main buckets. Some malwares of different families are signed by the same
certificate, which creates a high-confidence link between them.

This collection of signed malware is dominated by KorDlIbots. These are not all identical, there is considerable
variation between generations in functionality, encoding and encryption methods, but the similarities in overall
structure; string usage etc. is quite unmistakable. (See appendix for a full list of executables with this type of
signature.)

Other samples include keyloggers, SMB worms, Yahoo Messenger-communicating backdoor trojans and the
legitimate ProxyMini lightweight proxy server.

KORDLLBOT-RELATED SMB WORMS

The malware samples 163571bd56001963c4dcb0650bb17fa23ba23a5237c21f2401f4e894dfe4f50d and
e0cd4eb8108dab716f3c2e94e6c0079051bfe9c7c2ed4fcbfdd16b4dd1c18d4d in the cluster of signed malware do
not look like KorDllbots at first glance.

The usual service DLL dropper is here replaced with a worm component. After installation and reboot, this worm
generates random IP addresses and attempts to connect to the admin$ share on remote machines using the hard
coded usernames “administrator” and “db2admin”. The malware contains a list of common passwords and it will
also construct passwords based on the username. If successful, the worm copies itself to the remote machine’s
system directory and installs it as a service there.

In addition to spreading, these samples drop a backdoor component which is somewhat different in structure to
the “standard” KorDllbots. The dropper code logic used in these worms is however used in other KorDllIbot dropper
samples and is unmistakable - the strings “DGTSIGN” and “www.google.cn” are markers which the malware uses
to locate its embedded content.

. - g - 9bc8fe605a4ad852894801271efd771da688d707b
9fbe208106917a0796bbfdc
151 - P . w
A ZAD = A-{svl +0'[F 0 A This is a KorDllbot dropper
5 ¥ D 5 [+ 1 5| 0 D D D
I = 1 3o : (0
D 0 P 1 B g &d
il 3 [al Mu
e0cd4eb8108dab716f3c2e94e6c0079051bfe9c7c
2ed4fcbfdd16b4dd1c18d4d
11 B] [} R
== 5 FA0 % 7 =D i This is an SMB worm
0 5 He 0 b [1 B 0= 0 0

THE JOANAP/BRAMBUL WORM FAMILY

Speaking of SMB worms, a group of malware signed using the MicrosoftCodeSigningPCA pattern were a series of
SMB worms that had not appeared on our radar before. The variant we found first was named “Joanap” by several
antivirus vendors; presumably because of name appearing in the TO: field of callback emails from the malware —
“Joana.”

The malware comes as a dropper which installs three sub-components — one SMB spreading DLL (wmmuvsvc.dll),
one backdoor DLL (scardprv.dll) and one configuration file (mssscardprv.ax).

The spreader component generates random IP addresses and attempts to copy the dropper and the config file to
these over SMB. If successful, the worm sends an email back to its creator via Google’s SMTP server. The backdoor
component is essentially a KorDllbot. Not only is there code overlap with this family, but it also creates its API
decryption AES key based on the same string (“Bb102@jH4$t3hg%6&G1s*2J3gCNwVr*Uel!Dr3hytg"CHGf%ion”)
as previously mentioned KorDllbots, eg. sha256
a795964bc2be442f142f5aea9886ddfd297ec898815541be37f18ffeae02d32f.

Recently, Symantec published information (3) that links these worms to the Duuzer malware family. As we shall see
later on, this is just another connection to our threat actors.

We were able to locate several variants of Joanap-like malware using different email addresses and containing
different functionality. The earliest of these were apparently compiled as early as January 2009, with verified
occurrences of a newer variant late same year. See appendix for more details.

The latest versions of Joanap we found appear to be the type of SMB worm observed in connection with the Sony
attack, something also PriceWaterhouseCoopers has mentioned in a blog post (4).

THE DOZER (AKA 7.7 DDOS) ATTACK

The Dozer attack in July 2009 was one of the first attacks on South Korean targets that received international
attention. DDOS bots were distributed with lists of sites to attack — notably various Korean websites covering
government and bank functions, but also a great deal of US .gov, .mil and .com sites — including whitehouse.gov.
This also involved wiping of hard disks of the infected computers.

There is a known set of malware (7) connected with this incident.

Some of these samples appear to have been written specifically for the Dozer attack. However, the sample with the
sha256 hash 7dee2bd4e317d12¢9a2923d0531526822cfd37eabfd7aecc74258bb4f2d3a643 shares code with
KorDllbots, as can be seen in the function below, which does network receipt with xor decoding.

mou [esp+1881Ch+uar 188881, 1 nou [esp+101Ch+var_1008], 1
call ds:GetTickCount call ds:GetTickCount
moy esi, eax mou esi, eax
5 CODE XREF: KorDllbot_ RecvAndDecode+B7lj ; CODE XREF: KorDllbot_ RecuAndDecode+B7}j
; KorDllbot_ RecvAndDecode+E7}j ; KorDllbot_ RecuAndDecode+E7}j
call ds:GetTickCount call ds:GetTickCount
mov ecx, [esp+1@881Ch+arg 8] moy ecx, [esp+101Ch+arg_8]
sub eax, esi sub eax, esi
cmp Pax, ecx cmp eax, ecx
ja loc 10881F37 ja loc_4B82837
mov ecx, [esp+1@881Ch+arg_A] noy ecx, [esp+181Ch+s]
push] : _DWORD push a ; flags
lea eax, [esp+108206h+var_10004] lea eax, [esp+1828h+buf]
push ebp ; _DUDRD push ebp ; len
push eax ; _DWORD push eax s buf
push ecx ; _DUDRD push ecx HE-
call recu call recu
mou ebx, eax nov ebx, eax
test ebx, ebx test ebx, ebx
jz loc_10001F37 jz loc_482837
cmp ebx, BFFFFFFFFh cmp ebx, OFFFFFFFFh
jz short loc_10801EDB jz short loc_h@27D8
lea edx, [esp+1@881Ch+var_160864] lea edx, [esp+181Ch+buf]
push ebx push ebx
push edx push edx
call KorDllbot XorDecode call KorDllbot_ XorDecode
mov edi, [esp+18824h+var_108086C] mou edi, [esp+1824h+var 168C]
mov eax, [esp+1@8824h+arg 4] noy eax, [esp+1024h+arg_u]
sub edi, ebp sub edi, ebp
mou ecx, ehx nov ecx, ebx
add edi, eax add edi, eax
moy Pax, ecx mov eax, ecx
lea esi, [esp+18824h+var_180864] lea esi, [esp+1824h+buf]
add esp, 8 add esp, 8
shy ecx, 2 shr ecx, 2
rep mousd rep mousd
moy ecx, eax mou ecx, eax
sub ebp, ebx sub ebp, ebx
and ecx, 3 and ecx, 3
rep moush rep moush
call ds:GetTickCount call ds:GetTickCount
moy esi, eax mou esi, eax
jmp short loc 10881EES jmp short loc_4B27ES
5 GODE XREF: KorDllbot_ RecvAndDecode+61Tj ; CODE XREF: KorDllbot_ RecvAndDecode+611j
call WShGetLastError call dword_413ACH
cmp eax, 2732h cmp eax, 2733h
jnz short loc_18881F37 jnz short loc 482837
push 1Eh ; dwhilliseconds push 1Eh ; duMilliseconds
call ds:Sleep call ds:Sleep

KorDllbot (0075d16d8c86f132618c6365369ff1755525180f919eb5c103e7578be30391d6) vs Dozer
(7dee2bd4e317d12c9a2923d0531526822cfd37eabfd7aecc74258bb4f2d3a643).
The function is identical. This is just one out of several such functions in the sample.

We can say with reasonable confidence that the threat actors behind the Dozer attack also were involved in the
creation of the KorDlIlbot family or have had access to the source code.

THE KOREDOS (AKA 3.4 DDOS) ATTACK

Over a few days in the beginning of March 2011, different South Korean organizations were targets of a DDOS
attack. The malware launching this attack also contained very destructive components that wiped and deleted files
of certain extensions after some time, as well as overwriting the Master Boot Record (MBR) of all physical hard
drives. Good write-ups of this incident have been published by McAfee (8) and several others.

Some known Koredos malware samples (eg. sha256
48dee93aa3ea847dal19f5104e8f96070b03f1d52c46f39dc345f0102bf38836) use the same RC4 file decryption key -
“A39405WKELsdfirpsdLDPskDORKbLRTP12330@35$223%!” - as malware in the MicrosoftCodeSigningPCA signed
KorDlIbot cluster mentioned previously (eg. sha256
a795964bc2bed42f142f5aea9886ddfd297ec898815541be37f18ffeae02d32f). The RC4 implementation used is
identical. The very same KorDllbot also contains an AES key —
“Bb102@jH45t3hg%6&G1s*2J3gCNwVr*Uel!Dr3hytg"CHGf%ion"” which is used by several Joanap malware
samples.

We can say with reasonable confidence that the threat actors behind the Koredos attack, like in the Dozer attack,
have been involved in the creation of the KorDlIbot family.

Symantec reported another malware to be involved along with the Koredos malware - the stealthy backdoor
Prioxer (9). Prioxer made a return in connection with the DarkSeoul (often known as Jokra) attacks in 2013. This
relationship has been covered by in studies by both Symantec (10) and McAfee (5).

THE JOONGANG ILBO ATTACK

In 2012, the conservative daily newspaper Joongang llbo was subject to a disk wiping attack (11).

1) KOREA JOONGANG DAIY
Business Opinion Culture

" People - Special series

Sports Foreign community | sl S0{AIR &S

Politics - Social affairs - Education

= dictionary | B @ b

+A =A

&Ml | p=opy

JoongAng hi

N2, &t

t by major cyberattack

SEEE CELN | s

ol
0
0
rin

sSeee

Explorer
y|[29-

Not much technical data is in the public domain about this incident. However, a Korean researcher links this attack

to the Sony attack, based on code similarities (12). We have no reason to doubt this assessment.

THE DARKSEOUL (AKA 3.20 OR JOKRA) ATTACK

DarkSeoul was a debilitating and destructive attack in March 2013 that affected several Korean banks and news
organizations. It may be the most well-known of all the Korean “wiper” attacks. The incident has been extensively
researched by several vendors; notably the mentioned Operation Troy paper (5) by McAfee covered a good deal of
the malware involved.

The main malware family connected with that attack —an IRC controlled bot — was a programming project that had
been ongoing for years before being employed in the DarkSeoul attack. The earliest sample we have of this family
(known as XwDoor or Keydoor) was apparently compiled in January 2009. This family is quite easy to spot, as there
are a number of strings that appear consistently re-used. The intrusion also involved a backdoor family named
Prioxer. There was no obvious connection to the KorDllbot/Destover complex until Symantec tied the Prioxer
malware back to the 2011 Koredos incident (10).

THE KORHIGH MALWARE

The Korhigh malware was identified around June 25 2013 in connection with investigations into other attacks on
South Korean targets (13). This date coincided with the 63" anniversary for the start of the Korean War. It had a
destructive component, capable of deleting files and overwriting the Master Boot Record (MBR) of hard drives.

The malware was apparently created by a group calling itself “High Anonymous.” The following image was
contained as a resource in one of the executables:

v m e H
ANONYMOUS ANONYMOUS

There are strong similarities between the Sony malware and the malware used in the Korhigh campaign. These
similarities have been reported by Korean researchers (13), but have gone largely unnoticed in the West.

Comparing 4d4b17ddbcf4ce397f76cf0a2e230c9d513b23065f746a5ee2de74f447be39b9 from the Sony attack with
5b5aede68abb3aa50cd62c5f4f02078620f0b7bedceb679b6d5dfe25a44b8cb9 from the Korhigh attack we see code
reuse. Specifically, the code used for spreading over the network is almost identical. The technique used by both
goes as follows:

Scan for computers that have ports 139 and 443 open
Test the remote login credentials by attempting to access the admin$ share
If successful, create a remote service with the name “RasMgrp “ and description “RasSecruity”.

PwoN e

Use the commands “cmd.exe /q /c net share shared$=%SystemRoot%” and “cmd.exe /q /c net share
sharedS %SystemRoot% /GRANT:everyone,FULL” to create a “sharedS$” share.

5. Copy itself over to the share

6. Match the new file’s timestamp to that of the local “calc.exe”

7. Delete the share using the same service name, this time with the command “cmd.exe /q /c net share shared$
/delete”

Even the filenames used when copying itself over the share are similar:

Destover filenames | Korhigh filenames
recdiscm32.exe recdiscm.exe
taskhosts64.exe taskhosts.exe
taskchgl6.exe taskchg.exe
rdpshellex32.exe rdpshellex.exe
mobsynclm64.exe mobsynclm.exe
comon32.exe comon32.exe
diskpartmgl6.exe diskpartmg.exe
dpnsvrl6.exe dpnsvr32.exe
expandmn32.exe expandmn.exe
hwrcompsvc64.exe hwrcompsvc.exe

00403280 MatchFilTime H MatchileTime 004016E0

Secolian

[r— [—

File timestamp matching function comparison

There is little doubt that parts of the same codebase has been used in both of these attacks.

In the Sony incident, several malware samples contained information that seemed to indicate foreknowledge about
the layout of the targeted networks. This included local hostnames, usernames and even passwords.

This was also the case in the Korhigh attack. At least two samples
(5b5aede68abb3aa50cd62c5f4f02078620f0b7bedceb679b6d5dfe25a44b8ch9,
d6a07b7ecd5ae7e948cce032603558a5d21100ba5f04056c72aeclab2d36956e) came with pre-defined
configurations containing domain, hostname, username and password combinations. Though we have no hard data
to confirm this, it could mean that Korhigh was part of an actual intrusion at the time.

Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
Administratoric
BiAdministratoric
Administratoric
Administratoric
Administratoric
iAdministratoric
Administratoric
Administratoric
Administratoric

Part of a config resource showing network information.

NOV 2014: SONY ATTACK DESTOVER BACKDOOR SAMPLES ARE BASED ON KORDLLBOT

The Destover “lightweight backdoor” (sha256
4c2efe2f1253b94f16alcab032f36c7883e4f6c8d9fc17d0ee553b5afb16330c) mentioned in official statements
related to the Sony intrusion is a digitally signed file. There is also an almost identical unsigned file in existence with
the sha256 eff542ac8e37db48821cb4e5a7d95c044fff27557763de3a891b40ebeb52cc55. This unsigned file is the
original. It was established that the signed file was created as a “joke” by a researcher (4).

We were able to locate more malware samples similar to this backdoor. Many of these were created in a
timeframe well before the Sony intrusion came to light. Some also match the import hash indicators mentioned in
the US-CERT advisory, though import hashes are non-unique indicators and cannot always be relied upon.

Closer investigation reveals that this Destover sample is indeed derived from the same source base as KorDllbot.
This is based on the following indicators:

e The Chopstring API string obfuscation
e The CMXE command line construction
e Same way of declaring API’s
e Similarities with later samples, such as:
o A printf “MessageThread” statement in the beginning of the command handling function (similar
to Destover “MessageThread” samples)
o Use of the XOR-A7 encoding to decode strings (similar to Destover “b076e058” samples)

Throughout 2014 and 2015 and still ongoing in 2016, Destover-related backdoors have continued to be used in
various campaigns. They share many common traits, but there are also clear differences in functionality, hinting at
a common source repository but where customization is added as needed. Some subfamilies have received their
own variant names — i.e. Volgmer and Duuzer — while others have no separate moniker. See appendix for detailed
descriptions of variants.

OTHER POSSIBLY RELATED MALWARE ACTIVITY

A number of incidents and malware systems have been attributed to either the DarkSeoul group or North Korean
threat actors. This chapter will quickly go through some of these.

THE CASTOV AND CASTDOS CAMPAIGNS (AKA 6.25 DDOS ATTACKS)

The Castov campaign mainly targeted South Korean financial corporations and was discovered in May 2013 (16).
Notably, these malwares included code to steal banking credentials.

Some were designed to perform DDOS attacks on Korean government servers on June 25“‘, 2013 (16) (12) —the
same date that the destructive Korhigh malware was also uncovered - though we have no information as to
whether these cases were connected.

On the face of it, there is little to directly connect the Castov malware with the DarkSeoul/Destover complex, as the
codebase is largely different. For example, the initial downloader was a crimeware known as Tijcont, distributed by
the Gongda exploit kit. The downloaded banking malware was written in Delphi, uncommon for DarkSeoul projects.

However, Symantec states clearly in their blog post that they attribute Castov to the DarkSeoul group.

THE KIMSUKY SYSTEM

The Kimsuky malware complex was originally detailed in a report from Kaspersky (14) in 2013 and has been an
active component of the South Korean threat landscape since then. Ahnlab reported a new campaign in Feb 2014
(15), and an intrusion attempt into South Korean nuclear facilities in Dec 2014 was also identified to involve
Kimsuky (16).

The Kimsuky malware is different in structure from the Destover complex. It uses different encoding schemes and
algorithms than Destover, and email and FTP is used for C&C communication and exfiltration.

Similar to Destover, Kimsuky has used HWP exploits as infection vector. A number of samples rely on
vulnerabilities in the old OLE2-based HWP file format. However, they have not, as far as we have seen, used the
recent CVE-2015-6585 HWPX vulnerability which has been used to plant at least three variants of Destover.

There are some similarities in modus operandi, such as

e Encoded API usage.

e Frequent code hand-modifications between samples
e Malware installed as services

e Taunting the victim in public fora

e Posing as hacktivist groups (17)

e Publication of stolen data (17)

Based on the available data we cannot say that the Kimsuky-based campaigns are connected to the DarkSeoul
group.

THE BLACKMINE SYSTEM

Blackmine is a South Korean focused malware campaign detailed by Ahnlab (18).

The payload malware in question is a data harvester and uploader, which also allows for download of more
malware. In the same way as Kimsuky, there are some similar approaches with Destover —the usage of obfuscated
APl names for example — but also enough differences to say that Blackmine probably has not originated from the
same codebase. Ahnlab does however state that they see these groups as possibly correlated.

CONCLUSION

The attack on Sony Pictures Entertainment incorporated the use of malware which contained a number of
commonalities with malware used in previously known attacks.

These previous attacks were mainly focused against South Korean entities such as financial institutions,
government sites, think tanks and other important functions. Targets outside South Korea have also been affected,
albeit to a lesser extent: Apart from the Sony intrusion, the Dozer DDOS attacks of 2009 were also directed towards
US websites.

The amount of common factors between the different incidents makes it in our opinion very likely that these
incidents are perpetrated by the same group, or at least cooperating groups.

In this paper, we are not commenting on geographical attribution for the Sony attack. We note that a number of
the mentioned previous attacks (Dozer (15), Koredos, Korhigh (16), DarkSeoul (17)) have been associated with
North Korean involvement, but these associations have not been examined or validated by us.

It is worth noting that this threat actor is still active. We have seen Destover-samples compiled as recently as
January 2016. DarkSeoul should be considered a constant risk factor, particularly for South Korean institutions.

The Destover malware family seems to be the information gathering workhorse of this group — adapted and
changed to fit the purpose du jour, but retaining a lot of the same overall design and methodology. For specific
targets more customized malware is often deployed.

Command and control connections are almost always going to raw IP addresses, and different malware generations
tend to use different sets of addresses. It is our assumption that most of these IP’s are compromised computers
which probably are running proxies, and as such are easily disposable.

© 2016 Blue Coat Systems, Inc. All rights reserved. Blue Coat, the Blue Coat logos, ProxySG, PacketShaper, CacheFlow, IntelligenceCenter, CacheOS, CachePulse, Crossheam, K9, the K9
logo, DRTR, MACHS5, PacketWise, PolicyCenter, ProxyAV, ProxyClient, SGOS, WebPulse, Solera Networks, the Solera Networks logos, DeepSee, “See Everything. Know Everything.”,
“Security Empowers Business”, and BlueTouch are registered trademarks or trademarks of Blue Coat Systems, Inc. or its affiliates in the U.S. and certain other countries. This list may
not be complete, and the absence of a trademark from this list does not mean it is not a trademark of Blue Coat or that Blue Coat has stopped using the trademark. All other
trademarks mentioned in this document owned bv third parties are the propertv of their resnective owners. This document is for informational burposes onlv. Blue Coat makes no

http://www.v3.co.uk/v3-uk/news/2282616/south-korea-blames-cyber-attacks-on-north-korean-government-hackers

WORKS CITED

1. FBI. FBI Liaison Alert System #A-000044-mw. [Online] https://publicintelligence.net/fbi-korean-malware/.

2. US-CERT. Alert (TA14-353A) Targeted Destructive Malware. [Online] https://www.us-cert.gov/ncas/alerts/TA14-
353A.

3. Symantec. Duuzer back door Trojan targets South Korea to take over computers. [Online]
http://www.symantec.com/connect/blogs/duuzer-back-door-trojan-targets-south-korea-take-over-computers.

4. Ullrich, Johannes B. Malware Signed With Valid SONY Certificate. [Online]
https://isc.sans.edu/forums/diary/Malware+Signed+With+Valid+SONY+Certificate+Update+This+was+a+Joke/1904

9/.

5. Sherstobitoff , Ryan, Liba, Itai and Walter, James. Dissecting Operation Troy: Cyberespionage in South Korea.
[Online] http://www.mcafee.com/us/resources/white-papers/wp-dissecting-operation-troy.pdf.

6. Jiang, Genwei and Kimble, Josiah. Hangul Word Processor (HWP) Zero-Day. [Online]
https://www.fireeye.com/content/dam/fireeye-www/global/en/blog/threat-research/FireEye_ HWP_ZeroDay.pdf.

7. SecureSoft. 7.7 DDoS IXE 531 K OV BT EEE. [Online]
https://www.securesoft.co.jp/news_mt/docs/7.7DDOS_2.pdf.

8. McAfee, Inc. Ten Days of Rain. [Online] http://www.mcafee.com/us/resources/white-papers/wp-10-days-of-
rain.pdf.

9. Lelli, Andrea. Backdoor.Prioxerlinf: “Accidentally” the Stealthiest File Infector Ever! [Online]
http://www.symantec.com/connect/blogs/backdoorprioxerinf-accidentally-stealthiest-file-infector-ever.

10. Symantec. Four Years of DarkSeoul Cyberattacks Against South Korea Continue on Anniversary of Korean War.
[Online] http://www.symantec.com/connect/blogs/four-years-darkseoul-cyberattacks-against-south-korea-
continue-anniversary-korean-war.

11. Korea Joongang Daily. JoongAng hit by major cyberattack. [Online]
http://koreajoongangdaily.joins.com/news/article/article.aspx?aid=2954219.

12. Kwaak, Jeyup S. Sony Hack Mirrors Attack on South Korean Newspaper, Researcher Says. [Online]
http://blogs.wsj.com/korearealtime/2014/12/19/sony-hack-mirrors-attack-on-south-korean-newspaper-
researcher-says/.

13. Boannews. AU 3 2] 2 vs. 6.25 Ao B H| 2] P Z = A A B il E-A | [Online]

http://www.boannews.com/media/view.asp?idx=44451.

14. Tarakanov, Dmitry. The “Kimsuky” Operation: A North Korean APT? [Online]
https://securelist.com/analysis/publications/57915/the-kimsuky-operation-a-north-korean-apt/.

15. Fox News. S. Korea Analyzes Computers Used in Cyberattacks. [Online]
http://www.foxnews.com/story/2009/07/12/s-korea-analyzes-computers-used-in-cyberattacks.html.

16. v3.co.uk. South Korea blames cyber attacks on North Korean government hackers. [Online]
http://www.v3.co.uk/v3-uk/news/2282616/south-korea-blames-cyber-attacks-on-north-korean-government-
hackers.

17. Chosun llbo. Evidence in Hacker Attack Points to N.Korea. [Online]
http://english.chosun.com/site/data/html_dir/2013/04/11/2013041100648.html.

APPENDIX: TECHNICAL DETAILS

('_'&.
.,
9
O.
°9

.
oy

/C)
’]
' ¢ /e
f'J W f’,&)
_/ N[
. B ® e
== Py,
&\\ N P g
o N\
R\ -
(_I,! u‘& ,//"i‘_‘-\ﬁi)

@

/I dy"’v
o~/ \, ® :.‘
@/ |
@ v 0@
Qg® - o

Note: Data used for this report has solely come from public or
otherwise unrestricted sources.

THE JOANAP FAMILY

JOANAP.A BACKDOOR, JAN 2009

The first version of what could be called a Joanap-related malware was a series apparently compiled January 16"-
January 19" 2009. This is actually not a worm at all, as there is no code for network propagation present. Instead, it
is a data harvester and backdoor which bears some similarity with KorDllbots — API’s are dynamically declared,
harvested data is added to ZIP file before exfiltration, and the command structure uses a set of integers (0x1010 —
0x1020).

As previously mentioned, the Joanap malware series contains code snippets from publicly available Rbot code (25).
This includes an implementation of the Tiny Encryption Algorithm (TEA) which has been somewhat modified, as
well as the Rbot PLAIN_CRYPT algorithm. The default key used in the PLAIN_CRYPT public Rbot source is the string
”9024jhdho39ehe2”. This key is used if there is no other key passed to the algorithm.

However, this backdoor uses the same default key as later Joanap variants - “9025jhdho39ehe2”, a one-byte
change quite specific to this malware series.

Joanap.A also uses a custom key which is used both in the PLAIN_CRYPT algorithm (for string decryption) and in the
TEA algorithm (for data file encryption/decryption). This is the string “hybrid! @hybrid! @#” — which is visible in
cleartext inside the executable.

JOANAP.B WORM, OCT 2009

This malware is significantly different from the A version. The main similarity between them is the use of the Rbot
PLAIN_CRYPT algorithm for string decryption with the mentioned “9025jhdho39ehe2” default key. The custom key
used is now changed to “iamsorry! @1234567".

The executable contains two XOR-encrypted objects in its resource section. One is a dictionary file containing
passwords, stored in resource 101. The other, stored in resource 103, is an executable — a copy of the legitimate
PsExec tool from Sysinternals.

Contrary to the A version, this variant is a true worm. It generates random IP addresses and attempts to connect to
these over the SMB port 445/tcp. It uses the WNetAddConnection2A API to map the remote machine as a share,
using its dictionary of passwords. If this works, it will copy itself to the system folder of the remote server, and
extract its embedded PsExec application to execute the file remotely.

The malware does not connect directly to a C&C server. Instead it sends status mails to its controller via GMail’s
public mail server gmail-smtp-in.l.google.com. The email will appear to be sent FROM ninja@gmail.com TO
xiake722@gmail.com. Content is all in the subject field — initially only version (1.1), time, and local IP address.
Upon successful connection and copy to a remote machine, the malware sends mail again — this time also
containing remote IP, username and password, in addition to its initial fields.

Stream Content

220 mx.google.com ESMTP tl0s13662438Tat.87 - gsmtp
HELO www. hotmail. com

250 mx.google.com at your service

MAIL FROM: <ninja@gmail.com=

250 2.1.0 oK tl0s5i36624381at.87 - gsmtp

RCPT TO: <xiake722@gmail. com=

250 2.1.5 OK tl0s5i36624381at.87 - gsmtp

DATA

354 Go ahead tl10si36624387at.87 - gsmip
FROM: <ninja@gmail.com=

TO: Joana <xiake722@gmail. com=

SUBJECT: [T].1.1.201501240046016 . Ky

-

250 2.0.0 oK 1422175386 tl0si3662438Tat. 87 - gsmtp
QUIT

221 2.0.0 closing connection tl0si3662438Tat.87 - gsmip

Above: Email transfer between Joanap and the mail server.

A minor sub-variant of this Joanap generation exists. This sends email just the same way as described above, but
uses a different TO address (laohu1985@gmail.com) during network propagation.

JOANAP.B DOWNLOADED BACKDOOR, SEP 2009

However, spreading is not the main payload of the B version of Joanap. Instead, it attempts to download and install
a second stage malware. This malware, with the sha256 hash of
c6d96bed6ce3d616e0cb36d53c4fade7e954e74bfd2e34f9f15c4df58fc732d2, was hosted on the URL
hxxp://www.booklist.co.kr/upload/img/200810/25.gif. It would be downloaded and saved to disk under the name
sysfault.exe and executed.

This malware is an installer, installing a service dll in the system folder under the name “sdnssec.dll”. This is a listen-
only backdoor, establishing a listening socket on port 136.

Similar to the Joanap.A variant and other KorDllbot-related backdoors, this supports a number of integer
commands. The binary contains quite a lot of debug messages helpfully explaining the functionality of these.

Command Function

0x1010 List drives

0x1011 File browse

0x1012 File copy

0x1013 File delete

0x1014 File upload (to target)
0x1015 File download (to botmaster)
0x1016 Execute file

0x1017 Change filetime

0x1018 Folder download (to botmaster)
0x1019 Test connect

0x1020 Run shell command

0x1021 Sleep

0x1023 File properties

0x1030 Process view

0x1031 Process kill

0x1032 Process kill by name

Ox10FF Uninstall

JOANAP.C BACKDOOR, JUL 2010

The installer of Joanap.D (next entry) also actively deletes installed files named signtc.ax, signtm.ax, or signts.ax.
Searching for these brought up an apparently preceding sample which uses one of these files - signtc.ax - for
storing data. This sample appears to belong to a series of previous backdoors somewhat related to KorDllbot —
example SHA-256 hash is 4b6078e3fa321b16e94131e6859bfcad503bcb440e087d5ae0f9c87f1c77b421.

We have not analyzed this variant in detail.

JOANAP.D BACKDOOR, JUL 2011

This malware arrives as a service installer which extracts and installs a DLL named scardprv.dll from its resource
section, and writes hardcoded configuration data to a config file named mssscardprv.ax. It also attempts to delete
files installed by previous Joanap versions.

The dropped service DLL has similarities with KorDllbots. It establishes a listening socket on a semi-random port
which is either located between 1024 and 2048; or selected from a list of hardcoded port options. It also attempts
to connect to C&C servers which are defined in the saved mssscardprv.ax file as raw IP address/port combinations.

All network traffic is encrypted using RC4 with the binary key
(0x10,0%x20,0%x30,0x40,0x50,0x60,0x70,0x80,0x90,0x11,0x12,0x13,0x1A,0xFF,0xEE,0x48), and the backdoor accepts
integer commands in the range 0x4001-0x4015.

API strings reside in data blocks encrypted using AES. Network API’s are encrypted with the key

“b n4rbhrig890v9=023=01*&(T-0Q325J1N;LK", while all others are encrypted with the key
“Bb102@jH45t3hg%6&G1s*2J3gCNwVr*Uel!Dr3hytg"CHGf%ion”. This particular AES key was also found in both
Joanap and KorDllbot malware belonging to the previously mentioned MicrosoftCodeSigningPCA certificate cluster.

In addition, this variant includes the Rbot PLAIN_CRYPT decryption keys “9025jhdho39ehe2” and
“iamsorry!@1234567” for one specific decryption scenario. So, even though it is somewhat different from previous
variants, it contains enough technical indicators to link it to the Joanap family.

The samples we have seen do not appear to have network spreader capability, though they may have been
dropped by other malware.

= 1 — 1Y Hho ke) - HUIx o107 UsHa -EL 10 no?HA

0 <Pl — ¥Ee/@x){yelﬁylﬁ“UE+"EL“ F ukjma "!u“E ZG'7’ga)yY|/E7u\R’Ea9Bu
d‘uyal—*ﬂata not multlple of Bluck Size Object not Initialized

™ wrssxrexxBadd wrssxxeXxBadd. s “ENre e KB X
httpu-//uuu google .coms/index.html 1BBB mssscard Py . ax re

pdzxdxd:xf [messcardlog.ax at+ b idl p

'325J1N LE| ex_ 11utﬂn * rh wh+ Pundll exe 7025 hdhuE?eheZ
1A2=3B4y5Ch ' sWJKpLoMnMmO1PkQjRIShT glUf DeldEcYhia

®g M= iamsorry?@1234567 ®E ¥3 ¥= 3 *i + 7HUexce

ptionlE@ Incurrect engtl Incorrect key len

CEPSS . EXE BhiBZ@j H4$t3h /6
G15*2J3 CNuUr*UeI'Dr3h “GHGf/lun SCardPrv fegisterfervice

trIHandlerExF Hdvapiiz.
#ﬁ 3 Altype_infolR

Above: Indicators in the binary

JOANAP.E WORM, AUG-SEP 2011

Joanap.E was the first variant of this family we tied to this threat complex, due to the fact that several samples are
signed using the peculiar MicrosoftCodeSigningPCA certificate format.

This variant is again a worm — as mentioned before, the installer drops three files — one SMB spreading DLL
(wmmuvsvc.dll), one backdoor DLL (scardprv.dll) and one configuration file (mssscardprv.ax). The backdoor DLL and
the configuration file fill the same role as in Joanap.D.

The network spreader module contains some code from the B variant, but a lot of functionality has been reworked.
Similarly to B, it generates semi-random IP addresses and attempts to logon to the admin account of these
machines using a password dictionary. If it manages to do this, it creates a remote share named “Sadnim” (no
typo), copies the main installer (and the configuration file) over, and executes it. The authors have moved away
from using PsExec for remote execution. Instead they add shares and execute the worm by creating remote service
commands via the Service Control Manager.

If this is successful, the worm sends a status mail the same way as the B variant. Mail is this time FROM:
redhat@gmail.com TO: Joana <misswang8107@gmail.com>.

This malware uses the same encryption keys as the B variant. This worm sets the mutex “PlatFormSDK2.1".

JOANAP.F WORM, MAR 2012

We have only two slightly different samples of this generation. Again, the malware’s structure has changed. It is no
longer a service DLL, but instead a standalone Windows executable. Contrary to previous versions, this worm
requires being started with at least one command line parameter (either —i or -s), if not it just exits.

The —s parameter starts the spreading routine if it is installed correctly and it can find its configuration files. The
samples we have come without installer or data files and do not run.

There is no doubt that these samples belong to this malware family — they use the same encryption keys, mutex
structures and data file names as the E variant in the series. There is one notable exception: This is the first time we
see the file encryption RC4 key “yOuar3@s!11yid!07,0u74n60u7f001”, which closely matches the key mentioned as
belonging to the “SMB Word Tool” in the US-CERT advisory (2) after the Sony incident,
"yOuar3@s!llyid!07,0u74n60u7f001”. The difference might be due to a typo. The malware appears not to be
identical though, as some other strings from the advisory YARA rule are not present.

This worm sets the mutex “PlatFormSDK2”.

JOANAP.G WORM, OCT 2014

This Joanap variation uses the mutex “Global\FwtSgmSession106829323_S-1-5-19”, which also matches data from
the US-CERT advisory (2). However, this time the worm has switched to a different RC4 key -
“y@s!11yid60u7f!070u74n001”. This variation has been detailed by researchers from PriceWaterhouseCoopers (4).

JOANAP.H WORMS, OCT 2014-JAN 2015

This is a series on Joanap executables produced towards the end of 2014 and beginning of 2015. They use the
mutex “Global\FwtSqmSession106839323_S-1-5-20", but the same RC4 key as the G variants.

Some samples are quite a lot larger than normal on account of including a big chunk of code from the open source
FreeRDP remote desktop client. Apart from this we have not analyzed these samples in detail.

THE DESTOVER FAMILY

DESTOVER “BO76E058” BACKDOORS, FEB-JUNE 2014.

This sub variant has been named “b076e058"” based on the first portion of the RSA authentication key used for its
server handshake.

Most samples share the ChopString and XOR-A7 obfuscation functions with the Sony-associated malware
eff542ac8e37db48821cb4e5a7d95c044fff27557763de3a891b40ebeb52cc55. They also declare API calls in the
same way.

Samples of this variant were all compiled with the library name “Troy.dll” in the Export Table, similar to what
McAfee documented in their “Operation Troy” paper (5) on destructive attacks against South Korean targets.

“AE AE °AE AAR PAR iAR iiA® 1BE $BE 8BE JBE “BE pBE
°E@ EE® AER UE® QF2 1FR@ F& LBE BE 2 7
12GetComputerNamel! gBMoveFilel f FindClose TCﬂetDP
saryl B FileTimeToSystemTime A& FileTimeToDosDateTi
ess gWllnmapliewdfFile "wllideCharToMultiByte gEGetLa
Token ADUAPIZZ2._dl1l WS2_32.dll <BInterlockedDecremn
ection ! ExitProcess FEGetCurrentThreadld fwIlsSetl
Free ?Wlirtualflloc -BHeapReflloc »BRtlUnwind AEG
ringsl! *&@GetCPInfo DALCHapStringA EBLCHapStringl!

oFE 7» iFR Troy.dll ServiceMain

Troy.dll visible in 10d3ab45077f01675a814b189d0ac8a157be5d9f1805caa2c707eecbb2cbf9ac

This variant is typically installed as service, with one export - “ServiceMain”. Its main purpose is to listen on a given
port and accept commands. The integer codes used for these commands are:

A variant: 0x54b7- 0x54cb, with the exception of 0x54be and 0x54ca.

B variant: 0x54b7- 0x54cb, with the exception of 0x54be and 0x54ca, and the addition of 0x54d0.

The installation is done by unobfuscated dropper executables, which install the service DLLs after performing some
systems checks.

DESTOVER “VOLGMER” BACKDOORS, MAR-SEPT 2014

Volgmer backdoors were quickly connected to the Sony case, since several samples use a C&C IP address
(200.87.126.116) in common with the Sony malware droppers. The family is easily recognized by the peculiar
UserAgent strings used, which all start with “Mozillar/” instead of “Mozilla/.”

These backdoors come in three flavors (that we’ve found).
The first batch was apparently compiled March 15, 2014. These appear to be prototypes for later versions, and
helpfully contain debug strings labeling all major functionality. We have only DLL samples of this variant.

The second batch was apparently compiled in April 2014. The droppers contain a service DLL and a configuration
file in a password-protected zip archive embedded as a resource in the dropper executable. The dropper needs to
be able to extract these files, so it also contains the password - which in this case is “11234567890
dghtdhtrhgfjnui$%Ar&fdt.”

The third batch was apparently compiled in June and July 2014. These droppers contain a regular Win32 executable
where the configuration data is contained in the exe. The dropped executable checks the current locale and will not
run unless this contains the string “korea.”

Each dropper package comes configured with partially different C&C information. True to the standard modus
operandi of this group, all C&C servers are defined as raw IP addresses, typically located on ports in the 8000-range,
such as 8080, 8088 or 8888.

GA7YT
2t ofEY
Ho'oTY
(3
Efbc?Y

GIZR_"
Tead™r
YT Y

Configuration file from the first batch of Volgmer droppers - after the cgi_config marker follow IP/port pairs.

Main functionality involves gathering system information and uploading this to the two main C&C servers in an
encoded ZIP-archived format. They accept commands in the range 0x1000-0x1008 (A) and 0x1000-0x1012 (B/C).

DESTOVER “WINDOWSUPDATETRACING” BACKDOORS, SEPT-OCT 2014

This malware is somewhat different in design than previously mentioned variants. The installer package installs the
backdoor along with legitimate packet filtering components, and there is code to steal credentials from a great deal
of different products, some of which are Korean. One interesting feature with this malware is that it has some
limited support for other languages - it contains some user folder names in ex. Spanish and Portuguese in addition
to English. The name “WindowsUpdateTracing” is derived from a mutex created by this variant — typically this will
be “WindowsUpdateTracing0.5” but the suffixes “0.6” and “0.7” also exist. Chopstring APl obfuscation is also
present.

Command integers are in the range 0x58692ab8-0x58692ac0.

This trojan uses a semi-traditional Command and Control model, with connections seemingly going to a number of
DynDNS domains that are defined in an accompanying configuration file named msxml15.xml. This configuration
file is encrypted using RC4; typically with the RC4 key “BAISE0%52fas9vQsfvx%S” though some samples use the API
name “GetFileAttributesW” as key — possibly a bug.

Known C2 domains:

iphoneserver.lIflink.com
dns05.mefound.com
mx1.mefound.com
dns01.vizvaz.com
myserver.mrbonus.com
game.dnsrd.com
dns01.zzux.com
exchange01.toh.info
exchange04.yourtrap.com

However, the DNS resolution for these domains is misleading. The IP address returned by the DNS server will be
XOR’ed with a 32-bit key (we have seen two different keys, depending on variant type), which yields the correct C2
IP address to use. This means that relying on DNS resolution to identify C&C hosts will not work.

push 1 s _DWORD
push edx s _DWORD
mov [esp+24h+Ccp], 8@

call DnsQuery A

test pax, eax

pop esi

jz short loc_18085FBD

push eax ; ArgList

push offset aDnsqueryFailed ; “DnsQuery({) Failed. [%d]"
call sub_-18882388

mov eax, [esp+2Bh+var C]
add esp, B
mou dword pty [eax], @
Xor eax, eax
add esp, 8
retn

_188085FBD : ; CODE XREF: sub_18085F48+5DTj
mou eax, [esp+2@h+uvar_10]
mov ed=, [esp+2Bh+var_C]
push 1 s _DWORD
push eax s _DWORD
mov ecx, [eax+18h]
Xor ecx, 1ABPC2DE&h
mov [edx], ecx
mou ecx, DnskFree
test ecx, ECx
jz short loc_18085FES

IP longint returned in the DNS response is XOR’ed with a dword integer.

This bogus DNS response can be used in an interesting fashion. The domain mx1.mefound.com has resolved to the
bogus IP 44.58.156.86. When this IP is converted using the corresponding XOR key 0x579C3A53 it becomes
127.0.0.1 —i.e. localhost. Presumably this is done when the bot is not active. The IP 44.58.156.86 belongs to
University of California at San Diego (UCSD) and have as far as | can tell never been used to host any publicly
available domain. Still, passive DNS data shows that this IP has been the DNS response of a number of DynDNS
domains; many of which we had not seen before. We may thus assume that these domains are used in backdoors
containing the same XOR key as this particular Destover sample. This applies to the following additional domains:

update03.compress.to
baid.otzo.com
mx2.mefound.com
facebok.mrbasic.com
report01.onedumb.com
appinfo.yourtrap.com
gupdate.yourtrap.com
statusO1.instanthqg.com
eschool.toythieves.com
gogle.jungleheart.com
mycompany.moneyhome.biz

Since we know the XOR key used, we can also translate any other IP’s associated with these domains to presumably
correct C&C IP addresses (see appendix). If we repeat this process with the other XOR key we know of -
0x1AB9C2D8 - we end up with the localhost IP 127.0.0.1 translating to the bogus IP of 167.194.185.27. No

additional data was found at this time using this method, but any DynDNS domain resolving to this IP in the future
might be interesting to look at.

DESTOVER “MESSAGETHREAD” BACKDOORS, MAY 2014-MAR 2015

These Destover backdoors contain the Chopstring obfuscation, as well as XOR-A7 encoding.
They are straight remote control tools of the basic KorDIIBot model. The name stems from the Unicode string
“MessageThread” present in all samples of this type. The Sony Destover sample belonged to this variation.

The command integers used by this variant are typically in the range 0x523b-0x5249.

Unlike many other Destover trojans, some of these installers come with embedded decoy documents, hinting at
intended target audience. The decoys are all in Korean language — one document lists telephone numbers
belonging to personnel in government and other public functions; other samples contain an invitation to the
Korean Government 3.0 expo that was to be held in in Seoul.

e Do S o PSR (@, EREFE

2 aue o
- L] -
=0] =
- e
R B2l
el BT N
5 (3272)
CENE]
wee x.| H - N
< i oRIER @ > o~ .‘.‘ , qdn‘ E:—
i © :«a*:: ?-?m;an S0 x.l = 3 0
W BUEEY \ o .
Mzl 5FS HiSH
284 M 5, 60 B9 N S 822 7Y, o= o T OO

Y BUS 850l TULE2 TR

2015. 5.1 121 13:30~18:00
coeX 3%(327%)

| /R | HEQ0STISINS MRS, M S|

Gov 3.0 expo invitation

DESTOVER “B8AC0905” BACKDOOR, MAR 2015

We have only a single sample of this variant. The name b8ac0905 is derived from the authentication key string
contained in the file (See appendix). The APl obfuscation is here done via an encoding scheme which appears
unique, but bears some similarity with RC4. We call this encoding “Intbox” as the S-Box is not populated using a
string as input, but instead is a function of an integer key.

This is a “listen only” backdoor, and does not call out to any C&C server directly. We do not have the configuration
data that presumably was installed along with this sample, so no more details are available at this time.

The integer commands it expects are 0x00-0x0f, 0x12 and 0x15.

DESTOVER “B59D1659” BACKDOOR, APR 2015

We have only one sample of this variant too —a Win64 DLL exporting the functions ServiceMain, RasmanStart and
RasManEnd.Of these, only ServiceMain has any real function. The sample attempts to impersonate the legitimate

appmgmts.dll from X64 Windows 7. It is even of the exact same size as the original. The name b59d1659 is derived
from the RSA authentication key string contained in the file (see appendix).

The command words used by this variant are in the range 0x2638000-x236801b.

The C&C configuration is read from a data flle - appmgmts.rs - which presumably is created by the installer, and
which we do not have a copy of. Thus, C&C information and distribution method is unknown for this variant.

DESTOVER “RANDOMDOMAIN” BACKDOORS, MAR-APR 2015. VERSION C JAN 2016

Destover “Randomdomain” backdoors have also evolved from the original KorDllbots. They come in both x86 and
x64 versions.

There seems to be three distinct variants of this class of backdoors with slightly different obfuscation methods used
and C&C configuration, though most variants use the same APl obfuscation —an inline character replacement
technique resulting in almost recognizable API strings in the file. We name this technique “CharSwap” for the
purpose of this paper.

They connect to their C&C servers using what appears to be SSL/TLS. This includes a remote server name indication
(SNI) extension in the initial Client Hello. This server name is randomly picked from an internal list of domain names
—thus the name “Randomdomain.” A list of such names can be found in the appendix. When | say “appears to be”
SSL/TLS, this is because the encryption actually used is not secure. The malware can choose between different
simple encryption modi, and these are somewhat different between the known variants.

Variant A uses either RC4 with the string “TCPPROCESSREADY.” as encryption key, or a XOR 0x28, SUB 0x28
encoding, or a segmented XOR encoding . Variant B uses either simple byte wise XOR encoding with a shifting key,
or an even simpler XOR 0x25, SUB 0x25 encoding. Variant C uses only one — the same shifting XOR encoding used
by variant B.

Variant C checks auto proxy settings and will connect through the configured proxy if possible. This code is not seen
in earlier versions.

The command words used by these backdoors are in the range 0x123459 - 0x12348a (some files to 0x123488).

The two first variants were apparently in use in the first half of 2015. Variant C has been used more recently — we
have seen only two samples, the first date stamped May 2015, the last Jan 12“‘, 2016.

DESTOVER “DUUZER” BACKDOORS, MAR-OCT 2015, JAN 2016

The Duuzer variation of Destover backdoors have evolved quite a bit from the original KorDllbot basis. They use
more in-code obfuscation and are somewhat more complex. For example, string references are stored as encoded
local variables in special functions. Access to these variables is obtained by calling the containing function with an
offset into the variable blob, and the function decodes the correct string.

Similar to the “RandomDomain” and “e4004c1f” these backdoors use specially crafted SSL headers to initiate
communication with their C&C servers, but the encryption is custom. The command scheme is also somewhat
unique — instead of a digit to indicate which function to perform, these backdoors use binary multibyte command
statements.

There are several sub variants of Duuzer. One sample . (sha256
f31d6feacf2ececel13696dcc2dal5d15d29028822011b45045f9efa8a0522098) appears to be a predecessor and
somewhat simpler than later samples. Later variants include the “live” and the “naver” versions - based on the
server name they use in their faked SSL handshake, either “login.live.com” or “ad.naver.com”. The latest versions
we have seen — compiled January 2016 — don’t even bother with these strings.

As previously mentioned, Duuzer has been detailed in a report from Symantec (3). This report also mentions the
connection to the Joanap malware family, and details examples of live usage of the “CMXE” command line

execution mentioned before.

This variant has been seen as the payload of trojanized HWPX documents exploiting the CVE-2015-6585
vulnerability as documented by FireEye (6). Decoy documents include invitations to events like Korean Aerospace
Systems Engineering 2015, and Aeroseminar 2015; a Korean Aerospace Weapon System Development Seminar
(below). An email found on VirusTotal shows that an exploited document containing this exact decoy was
attempted sent to the Korean Atomic Energy Research Institute (KAERI).

LFH wu042) B21-3378

S0y
EEmET TR0 =g 042) 81.3322, 1 0
34186 G RESHT MME TR SMHERANT FE 2L 7IEE HEE AsTUG
E-mait aeroseminar2015@add.re.kr SAPHMEE R 20150 108 169
“EAHE

QunsE ok AR 042) 552-5500, . ak 02 042) S52-5525
T)11s2n3@gmail.com

32800 B AEA MECIE 663 AbME 501317 = H)aeroseminar2015@add re kr
Fa He GO Y7102 YU T LOH M, ASHFRYGAI]

FALL
GHUITE GFEA BIE RO e

A 2F0| 2 -¥=aesE el W
B2 IC - ABMHE ~ BYG AT S HOB - BT |
0=
- ME H2eTER 084
e 2S¢ BY — deidHa 2ET - Ag4HE 2
me
— B ST 22 AL - BAIT, 15m
Y AOMS BNG YATAY e DEg SETR 1F

= -TEE
HSaB0I8 Jramaa H7 B S o8, S8 128

e
HRE AL H= 4% 2 MBH= 0|8 =M 138
31, 30+1, B2. 200,220,240,482,4418 ==

HeUZ HRY ST EE 208
| .
MBS 8% EAT — 2R _ GRS — Ao, $423 s 287w - w0y * 2 OF2A| =

DESTOVER “E4004C1F” BACKDOOR, JUL-SEP 2015

The main differences in this backdoor arise from the inclusion of what appears to be modified open source SSL/TLS
code. This is used to construct legitimate SSL headers, though the communication itself is encrypted by a
homegrown encoding scheme. This backdoor is found in both x86 and x64 variants.

The name e4004clf is taken from the start of the authentication key found in all these samples.
The command integers vary somewhat between sub variants:

Variant A samples use the range 0x00-0x0f, with addition of bytes 0x12, Ox1b, and 0x64.
Variant B samples use the range 0x0a-0x24, with exception of bytes 0x18, Ox1c, and Ox1d
Variant C samples use the range 0x0a-0x26, with exception of bytes 0x18, Ox1c, and Ox1d

This family has also been used as the payload of CVE-2015-6585 trojanized HWP documents. The FireEye write-up
on this mentions a backdoor they name HANGMAN (7). FireEye uses a proprietary malware naming scheme which
makes it somewhat difficult to correlate, but we believe this corresponds to the “e4004c1f” variant. In the same
blog post FireEye mentions a backdoor they call PEACHPIT. Based on the code snippet shown, we believe PEACHPIT
to belong to one of the early KorDllbot generations. As mentioned, the exact same CMXE code has been used in

several generations from 2011 and onwards.

Decoy documents used by “e4004c1f” include descriptions of the LDAP protocol, and a text on the virtues of Scrum
vs Kanban. The latter was attempted sent to the Korean Google group “sysadminstudy”. It is possible that this
generation of malware has been aimed at the IT/software industry.

From: sysadminstudy @googlegroups.com on behalf of (| 034 S : @gmail.com > Sent: ma 07.09.2015 04:03
Ta: sysadminstudy @googlegroups. com

Cc

Subject: [sysadminstudy] = 32 0t ZHEHH| [HEF S SILERERIEH E. e U558 JA HIELILL

| Message | & Scrum vs Kanban.hwp (4 ME]

N1

=

OISH2Y Bl=Alt ool ChEt 0= S o/ SFESZ UL &

rlo

22 DF Zhetol| o)

]

|2 ZHEHO CH

ror
rah
rah

ISEHETTY) S 2=

C

O] MY Z Google 2 &= 'sysadminstudy’ 2 H LU TS UM A S5 = HIAIR S LICH
ol 250A BEISt D O Ol 0|HY E 2R 2224 E sysadminstudvtunsubscribe@googlegroups.com | O HIE £ ZLHMI S
ol 380 AAISH2]H sysadminstudv@googlegroups.com ™l 0| ML £ 2UM 5.

== "=

http./groups.google.com/group/sysadminstudvil A 0] IS 2 Y EGIM 5.
O B2 &M 2 22 ™ https/groups google.com/d/optout Z2(E) Y =5t 5.

1. LDAP(Lightweight Directory |
Access Protocol)ol Cist =& Z

AARHAA 224 0l AR AF 552 UAE 2l LDAPTE A0 M ZiA
o]Zio] ZAYA ApHE] PORES SHA,

LDAP# H-<¢1217})2

1. o8 2] AH| A8 LDAP

LDAPTF 2917} Lightweight Directory Access Protocolo]2hs Yoly 22 ¥z 51H
‘Ao UuEg AyA ErE@ojgls @] Boh JF TuEeich 2oy TuEeg]
o EET He] oo g0l Aty g 3 BITh O3 27 SHEr) g AHo] T
HE B oflzt o® FE A= THo] W= Eo TS HER dE)aSiy 2 oot glr)
HAERE Ae 22 HE&T 2UINA 19809 Lol EFEore] TUED Mu[A9]
018, MY 237t Sotzdol T2t CCITT{International Telegraph and Telephone Consult
ative Committes, S0 S ITUCILHSL 1SOiInternational Organization for Standardization
J® TA @A Zs00012he UHEED] MulA: BEE UWET] AFSIALH 23 199090
CCITT? 225 2R 19939,1997 292 +A09E HA Ao o2k o

2y
HE00S ZHzs gird X QUED ALH0IHD YT AYE AMESE ZET
FH2ES MESES EU ol ME et tolH 2 il Boliin J2ju RURTE

H

E38 Z9¥HL B8 YES,EE SEZEZ08o FoiA 41 AEE + S B2t
= "ol £Z& E 4+ Hnh
—l==| DsP —l==| DISP
Master DRA-2 Master DEA-1 Shadew DSA-1

{directory system agent)

DAP DaAP

[] []

Decoy documents used by the “e4004c1f” variant include a Korean text on the LDAP protocol.

Apart from the similarities with other malware established in the publications mentioned above, this variant has
been distributed in a particular installer which includes the backdoor in an embedded password-protected zip
archive. The password for this zip archive is /1234567890 dghtdhtrhgfjnuisS%"*&fdt” - identical to the password
used by Destover “Volgmer” backdoors already detailed in this paper. There are also code similarities with Volgmer

elsewhere — for example, the function to declare network API’s from ws2_32.dll is identical, and the APl names are
encoded using the same APl obfuscation scheme.

The C&C configuration can be hardcoded, or stored in a data file and subkeys under the registry key
HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security.

Some variant A samples uses subkey a57890bc-ca23-3453-a23c-d385e9058fdf
Some variant C samples uses subkey 821d1af-7a08-4b06-81cd-869365cdf713

100054A0 Volgmer__DeclareNetworkApis

111113 prerepmere——

10005aRD
100054A1 push
l00054R2 e

100054R8 push
100054AD eall

100054RF e
100054B1 tast
1000543 dmz

adi
aai, as:
afuetmat

asd, aax
asi, ast

felgmar__Daclaralstworkipia

Losdnirearyh

Lesdninearyh
v

1se 10m05acE

'

10005480 Volgmer_BDeclasmNatwerkipis
1005@s puan = i ax
lomosas ear aat
10005482 mov ast, eax
L00sEE cast ass ast
1m0z gz lac 100055A3

10005480 Velgmar_t

10005026 puan unk_10016E5 ¢ _DooRD

100054cE pusn . DeRRD

1noosece ealt ds: (GatProckddmss 0 Gaterochadrass 0

10052 pusn unk_10016EDT unk 1001620

10005007 push asi DRI

10005408 v ds: (WaRStartup!, eax WaRstartup

Tnoosapp eait as: (GatProckadsass 0 Gatprocksdzass 0

100050E3 push unk_10016ETE. - unk_1001GETE

10005E8 pusn ast

100080E8 v ds: (WRClaanup], sax

noosEe eait as: [GatProckadsass 0 Gatprockadzass 0

100080F4 puan unk_10016EER wank 1001622

100054F3 puan ast

1n00S0FR v ds: (s0ckat 1], aax

100084FT call ds: [CatFromddmas 0 o

1005505 pusn unk_10016EER. -

1000830A puan ast

1n00ss0e oy as: (ntons 0/, sax

Tnoossn ealt ds: [CatPrackidmss 0 o

10008336 puan unk_10016ER2

10003338 puan asi

Inoussic mew as: (acespe), az

1n0oasa1 eall ds: [CatFrociddmss 0 o

1003327 puan unk_10016ER

1000552 push asi

10008530 v ds: feamact 01, aax

Tnopssaz eatt as: (CatProchadrass 0 o

10005538 pusn unk_10016F01 - uwnk_10016F01

10005330 puan ast DERD

In00sE3E mew ds: (salsct 1), asx i salact 1

In0pssan el ds: [CatProdhddsass 0 Catbrothddiass 0

10008343 puan unk_10016F08 wank 1001650

1000554E pusn asi”

10008548 v dar (send 1), azx sena_n

n0osssa el asi |CatFEamAdms 0 CatpEacaarass 0

1000555K push unk_10016PIB. - unk_10016FIB

10008358 puan ast

Tnoossen mew as: (racv_n1,

nooses eall ds: [CatProckddmss 0 o

10005368 pusn unk_10016F18

10005570 push asi

ool mew as: (gatnoatbynans 1, aax

10008576 eall ds: [CatFrociddmss 0 o

1000s7e puan unk_10016F25

10005561 pusn asi

100062 mov asi (elosasenkat 01, aan

Tnoosser eait PR ————— o

10008380 puan unk_10016F2E.

10003352 puan ast

10003553 v ds: (shutdesm_11, e

ln0osssn eail asi |CatFromAdmss 0 o

1n0055sE mew as: [satsoekspr 01, aax

100054M0 Volguer_DaclareVetwsrkApis

100055K3 pop i
100058AY mow sai

cli
a

e4004cf1__DeclareNetworkApis 00401F82

Pl

~
DT L e p——
manie: g ast sdN0at1_Baclaraketuckipis
Wa0IFEs pun eat
WAIFRS mew aat, da: (foadiibraryh SR
AR puh asuecwal gm——
wanger ea
MAIFSl mew ast, aax
Wa0IFE3 st asi, sal
maniFss gmr ee anieas
aoen1rez
nnnirE
nmaniemc
IMDIFE mev ssi, eax
IMDIBG tasr sads est
manimz 1oe. anznes
00amraz st0nder1_s s
00MMFAR push unk_d15end)
D0SMEAD pusn asi DAD
OUEMIFAE call ds: GitPrelddrems 1) (f GatPreldirass 0
0GmEB pusn ok AlsED 1 unk_a1560¢
D04MIFBY push ast XORD
C0AMFEA mov e ideord ALIAD. aax
O0GMIFEF call as:iGerFiseaddrazs_n 0
D0QMFCE push unk_d156%K -
Goempeh pusn et / _owdRo
Q0AMIPE mov s ibeord ALEEGE), @ax ¢ dword Q1SEGR
90aMIFDN call as:iGerFiseddrazs_n Gatriseastrass_n
00eMFDE push unk_a15en / unk_as6m1
GoemEDE puan st DaGin
OUEMFLC mov da:deord 4160081, aax f/ dword 416008
QOAMFEL a1l e GitPimeddrems 1) (/ CatPrachdirass 0
004MFET pusn unk_a15657 - unk_aissE?
0emrEs s et =
CUSWMFED mov i ieord ALII0. sax Gwara a15ea0
O0EMFFZ call ds:|GitPrmelddrems 1) // CatBrschdirass 0
Q0MMIFFE push ok AlSEE / unk_a156r
00eMFFD puan et radm
OOGMIFFE mov as:imeord a1msel, am dwora_aizesc
004MANA a1l i |GetPrmchddrems 1) (f CatPrachdlrass 0
00813 pusn ok A1sTOG unk_aLs70s
004200 push ast XORD
00AMANNF v s iheord ALSF1E), @as ¢/ dword Q1SFIR
GoamENia call as:iGerriseddrazs o 0
Fush unk_a157n -
pan sat DaGin
mov. da:ideord 4LSR3), asx dwcrd 415650
11 da:[GatPrchdtrazs 1 GatPiScadirass 1
mah ok a1s722 / unk
pusn asi
wov darldeord 4150091, aax
@11 st GeCPrachtrass 0 1
push unk_d15717 - unk_als71?
man sl =
ov da:imeora alwEs), am Gwcra_aiseEn
11 da:(GatPrsehddrazs 0] ff CatPraciddrass I
Ran ok asnzs unk_a15725
push ast XORD
00EMENS3 mov d:meord 41RO, am Gwora_a1seEn
00amENEE call e |GetFisehddress 0 Prachdirass I
G0smDsE puan ok ausTa asal
00402063 push ast RO
G0GWADES MoVt dord ALEERR), a3 4/ dward QISEFR
00amENEs call st GerFiseddrazs_n Gatriscastrass_n
00MMANEF push k41573 ¢ unk_a
Goemnre puan st Dagin
00EMANTS mov da:deord 4LECD], aax f dword 41%ECD
Q0GWANIA w11 i |AFISeAGtrsms 0) ff GAtPescAdivass 0
0anzED mov s [auord_a1soD0], aax asera_a1soon

Q40LFE2 @4004cf1_DeclareNetworkipls
S

UDADZO0RE pep
0040208 pes asi

The network API declaration function of a Destover “Volgmer” and a Destover “e4004c1f” backdoor.

DESTOVER “BASICHWP” BACKDOOR, SEP 2015

This generation of backdoors is similar to the previous ones in that they use a custom SSL-like protocol for C&C
communication. They have been further simplified, but use more C++ classes, and the 256-bit stream cipher
Caracachs (hardcoded password “abcdefghijkimnopqrstuvwxyz012345”) is used for both network traffic and API
obfuscation. The same password is used in the example code for Caracachs found online (8), so no great effort has
been taken to protect the encryption.

This variety of Destover is the third we have seen installed by documents exploiting the CVE-2015-6585 HWP
vulnerability.

Command word set for this generation of backdoors is 0x8378-0x8390.

Decoy document content include a CV from an apparently South Korean individual, and a document apparently
from the South Korean Foreign Affairs and Unification Committee, as seen below.

2015. 8.

Qg

Decoy: State information systems audit planning document, Aug 2015

DESTOVER “FORMBOUNDARY” BACKDOOR, NOV 2015

This backdoor has many code overlaps with RandomDomain.B — for example, it uses CharSwap API obfuscation,
and uses the same set of integer commands. It has evolved away from the use of faked SSL, which means whole
segments of code have been removed, including most of the domain names used for the SSL handshake. Instead, it
connects to the C&C server via regular HTTP on port 80 and initially posts a blob of random data disguised as a
legitimate file. Any real content is sent encrypted afterwards, using one of the bytewise XOR encodings known from
RandomDomain.

M Follow TCP Stream (tcp.stream eq 0) - |O &

Stream Content

POST /member/ HTTP/1.1

HosST: www. amazon. com

)connection: keep-alive

)content-Length: 1025

Icache-Control: max-age=0

laccept: =/*%

User-aAgent: Mozilla/4.0 (compatible; MSIE 7.0; wWindows NT 6.1; Trident/4.0; SLCC2; .NET CLR
2.0.50727; .NET CLR 3.5.30729; .NET CLR 3.0.30729; Media Center PC 6.0; Inforath.3)
)content-Type: multipart/form-data; boundary=----FormBoundarytv3wLmytsDEBMazs
lsccept-Encoding: Ezip,def1ate,sdch

lsccept-Language: ko-KR

—————— FormBoundarytv3wLmytsDEEMazs
lcontent-Disposition: form-data; name="filel"; filename="mypage.docx"
Icontent-Type: application/octet-stream

§...d-.. .Glpo.19..f....p..f.Q.nL.E.f9. Lzk.o. ... Ao,

6.;w:.“....,....Jr.T u.UF..v;/ LZ; i p 1. (.a. Mo m. qD LLLO0UNLL e 3Ll @ .v..

Y Weeeoonnann Q&=9j....... 33.p+.](L \ATQ. .,.B..—...V;.c...?.Mk.g_....U.(..]....&#e}
jo...P.....mD...8..2..&8W\B.5........

{ Veuooo v GoL L AMLLLGL LTl OWML L @.<<.m.M...R. CUe]# .U A..Q...g.=.?..0 J..k3.|.B...ReO

[. ... Bju..... ol+...V..Z.0.%. e ok.[$.|t fo.D=—.3..:..

$BZ..... t3..... 4.A..n.?...l_...1'.\ LB 5 -B.m..<.D. \YSS* oG,
[..=.cZ..... W.*s)<W..n."..rN.. qE$5TAf@l1 bL...bz.6.K..%.5..dw .d>.e. z.@B/
z...P.O..... IOpvh&.. 1)..... Coveennennns y TS&L G e A, c...I/ Yd.r..M..]0=..... q SREU
AT TR T S - O) I o [S 7. u'r....oooie.. 5.L.1 PV Moo #{..0%8 ...
—————— FormBoundarytv3wLthsDEBMazs——

|Entire conversation (1473 bytes) j

Find Save As Print — ASCH (" EBCDIC " Hex Dump " CArrays * Raw

Help Filter Out This Stream | Close |

Sending initial POST statement to C&C server

The HTTP header fields can vary — many are selected from hardcoded lists, including the “Host” field. The
FormBoundary string is terminated by a randomly generated character sequence, and the malware queries the
system via the API call ObtainUserAgentString to get the current default User Agent. If this call fails, the hardcoded
User Agent “AgentString” is used instead.

DESTOVER “VOLGMER2” BACKDOOR, JAN 2016

This was found as a DLL backdoor sample “t(x86).dIl” which contained several traits in common with the Volgmer
series. Further data mining revealed that identically to Volgmer, the sample is installed by a dropper which contains
the DLL in an embedded zip file resource named “MYRES” in its body. This dropper is again extracted by another
outer dropper with a similar embedded zip inside, which also in addition contains a configuration file ntuser.inf.

ShADprops.dll

«MYRES» ZIP resource

Loader(x86).dll ntuser.inf

config data

«MYRES» ZIP resource

t(x86).dll

main payload

This config file contains - among other things - C&C IP and port information, which is read and written to a registry
key before being used by the main payload component.

HKLM\SYSTEM\CurrentControlSet\Control\WMI\Security subkey = “72caldlaf-7afc-4c06-cc1d-8feaac5cdf764”.

Volgmer2 shares API declaration functions and string decode algorithms with the original Volgmer. However, there
are also clear differences. Its network behavior has moved away from HTTP post with the recognizable “Mozillar”
UserAgent. Instead, C&C traffic is performed via faked SSL with another encryption twist — RC4 with a layer of XOR
on top. They RC4 key is binary, and hardcoded in the executable: 0x0d, 0x06 ,0x09, Ox2a, 0x86, 0x48, 0x86, 0xf7,
0x0d, 0x01, 0x01, 0x01, 0x05, 0x00, 0x03, 0x82. Similarly to the RandomDomain series, Volgmer2 uses domain
names chosen randomly from a list in its SSL handshake.

The dropper executables in the “Volgmer 1” series contained some checks for VM environments. Volgmer2 has

taken this further, and included a number of anti-debugging tricks and of checks for what appears to be known

sandbox environments.

Uolgmer_ IsInsideUH proc near

; CODE XREF: sub_18883818+45]p

arg_0 = dword ptr

push
mov
moy
call
test
jz
mov
or
moy

loc_180831DD:
call
test
jz
mou
or
mov

loc_180831EE:
call
test
jz
mov
or
mou

esi

esi, [esp+i+arg 0]
dword ptr [esi+ 1.
Uolgmer__IsUHWare
eax, eax

short loc_188831DD
eax, [esi+ 1

al,

[esi+ 1, eax

; CODE XREF: Volgmer_ IsInsideUH+13Tj

Uolgmer_ IsUBDX
eax, eax

short loc_180831EE
eax, [esi+ 1

al,

[esi+ 1, eax

; CODE XREF: Uolgmer_ IsInsideUH+24Tj

Volgmer__ IsUirtualPC
al, al

short loc_188831FF
eax, [esi+ 1

al,

[esi+1Bh], eax

Uolgmer2__ UMCheck proc near

call
test
jnz
call
test
jnz
call
test
jz

loc_481D58:

5 CODE XREF: wWinMain{x,x,x,x)+231p
Uolgmer2__ IsUMWare

eax, eax

short loc_4B1D47

Uolgmer2__ IsSUBOX

eax, pax

short loc_uBiDus7?

Uolgmer2_ IsUirtualPC

al, al

short loc_u6iD50

; CODE XREF: Uolgmer?_ UMCheck+7Tj
; VYolgner2_ UMCheck+18Tj
Uolgmer2__ IsComputerHame_KnownSB
eax, eax
short bailout

; CODE XREF: Volgmer2_ VUHCheck+19Tj
Uolgmer2__ IsDebuggerPresent
eax, eax
short bailout
Uolgmer2__IsRemoteDebuggerPresent
eax, eax
short bailout
Uolgmer2_ CheckHtGlobalFlags
eax, Pax
short bailout
Uolgmer2__CheckProcessDebugPort
eax, eax

short bailout
Uolgmer2__CheckProcessDebugHandle
eax, pax

short bailout
Uolgmer2__CheckProcessDebugFlags
eax, eax

short bailout

loc_188831FF: 5 CODE XREF: Volgmer_ IsInsideUH+35Tj
pop
retn

Uolgmer__ IsInsideUH endp

; CODE XREF: Uolgmer2_ UHCheck+22Tj
; Uolgmer2_ UMCheck+2BTj ...
push
pop
retn
Uolgmer2__ UMCheck endp

Volgmer1 vs Volgmer2 dropper evasions.

The change also means that the malware continues to work if under a virtualized environment, if there are no other
indicators that there is monitoring or debugging activity going on. The check for known sandbox environments is
done by comparing the computer name with the names in the following list:

MARS53

35347

JOHN-PC

TVMCOM
PLACEHOL-6F699A
WIN7PRO-MALTEST
WINDOWS-F99AACA
XELRCUZ-AZ
RATS-PC

PXE472179

The command integers used by Volgmer2 are in the range 0x09-0x27 with the exception of 0x17, Ox1b and Ox1c.

APPENDIX: ALGORITHMS AND OTHER INDICATORS

Chopstring obfuscation

'Destnuer_suipF eriods proc near CODE KREF: sub 4%84188+241p

sub_404180+3E4p ...

arg_@ = dword ptr &
ROy edx, [esp+arg_ @]
push esi
mow esi, offset unk_WL13EEA
push edi
nouy ecx, 14h
®or eax, eax
mow edi, esi
rep stosd
CRAp byte ptr [edx], @
jz short loc_ 404170
loc_ 44158 : : CODE XREF: Destower_ SkipPeriods+2EQj
ROy al, [edx]
CRp al, 2Eh
| j= short loc_LB4168
cap al, 2oh
jz short loc_bB4168
mow [esi], al
inc esi
loc 4B4168: : CODE XREF: Destover SkipPeriods+1FTj
; Destover_ SkipPeriods+2atj
Py al, [edx+1]
inc edx
test al, al
jnz short loc &B415B
loc_LBh170: ; CODE XREF: Destower_ SkipPeriods+191j
pop edi
Ao eax, offset unk_413EEQ
pop esi
Fetn

DPestover_ SkipPeriods endp

Chopstring deobfuscator

call ds:loadlCibraryf

mow esi, eax
test esi, esi
jz loc_100031ES

push offset aGet Pr_oc_ad d ; " Get. Pr.oc _Ad.dr ess™
call Pestover SkipPeriods

add esp, 4
push eax ; lpProcHame
push esi : hHodule

call ds:GetProcAddress

PRI S PSS SR E—L I ¥ SUS——— - . LT — —T | S T |

Deobfuscation of the APl name before it is sent to GetProcAddress. Yes, they look up GetProcAddress using
GetProcAddress. Go figure.

XOR-A7 obfuscation

This is a forward bytewise XOR encoding using OxA7 as key.

SUBRODUTIHNE

5 [IDASUB] HDS5 present in Idasub database, hits : 2
; [IDASUB] Last synced with Idasub Sat Jan 24 23:19:21 2815
; [IDASUB] HMatch: Fuzzy

Destover_ DecodeString proc near ; CODE XREF: sub_481738+62Tp

; sub_481738+7BTp ...

8 SUBROUTINE

; [IDASUB] Hame imported from Idasub database. Hits in the DB : 2
: [IDASUB] Last synced with Idasub Sun Jan 25 00:86:44 2615

; [IDASUB] HMatch: Fuzzy
H

Destover__DecodeString proc near ; CODE XREF: sub_18881760+46Tp
; sub_18081768+60Tp

arg_8 = dword ptr 4 arg_@ = dword ptr 4
push ebx push ebx
mou ebx, [esp+i+rarg 8] mou ebx, [esp+h+arg_0]
push ebp push ebp
push esi push esi
push edi push edi
mou edi, ebx mov edi, ebx
or ecx, BFFFFFFFFh or ecx, BOFFFFFFFFh
xor eax, eax ®or eax, eax
repne scash repne scash
not ecx not ecx
push ecx ; size t push ecx 5 size_t
call _malloc call _malloc
nov ebp, eax mnov ebp, eax
mov edi, ebx moy edi, ebx
or ecx, OFFFFFFFFh or ecx, BFFFFFFFFh
Xor eax, eax xor eax, eax
add esp, 4 add esp, 4
Ror esi, esi Xor esi, esi
repne scash repne scasb
not ecx not ecx
dec ecx dec ecx
jz short loc_4Bui127 jz short loc_1806847B7
mov edi, ebx noy edi, ebx
nov edx, ebp nov edx, ebp
sub edi, ebp sub edi, ebp
mov [esp+1Bh+arg_8], edi mnoy [esp+1Bh+arg B8], edi
jmp short loc_ 48418E jmp short loc_1080479E
H H
loc_40%18A: ; CODE XREF: Destover_ DecodeString+5%5 loc_1800479A: 5 CODE XREF: Destover_ DecodeString+
mou edi, [esp+1Bh+arg_8] mou edi, [esp+1Bh+arg_6]
loc_ 40%1BE: ; CODE XREF: Destover_ DecodeString+38 loc_1000479E: 5 CODE XREF: Destover_ DecodeString+
mou al, [edi+edx] mou al, [edi+edx]
mov edi, ebx noy edi, ebx
xor al, BA7h Xor al, 6A7h
inc esi inc esi

String deobfuscation functions in the Sony Destover (left) malware and Destover “b076e058” (right). They are

identical, even down to using Oxa7 as xor key.

XOR-XX-SUB-XX obfuscation

This is a forward bytewise XOR, SUB encoding, usually used in communication encryption/decryption. The inverse is
usually also present in the form of ADD, XOR. Many different byte combinations are used in the various variants.

Destover_ XOR7Y3ISUB3A proc near ; CODE XREF: sub_4642Ce+DeTp
arg_#8a = dword ptr 4
arg 4 = dword ptr B8
cmp ecx, [esp+arg_4]
jz short loc_ 4846708
cmp ecx, [esp+arg_4]
jz short loc_ 484678
mov ecx, [esp+arg_4]
loc_484670: ; CODE XREF: Destover_ XOR73SUB3A+ATj
; Destover_ XOR735UB3a+ATj
cmp eax, [esp+arg_#]
jz short loc 484682
cmp eax, [esp+arg_0]
jz short loc_LB4682
®or eax, eax
add eax, [esp+arg_#A]
loc_L4B4682: ; CODE XREF: Destover__ XOR73SUB3A+14Tj
; Destover_ XOR735UB3A+1ATj
test BeCcX, ecx
jle short locret_ 484694
loc_hB4686: ; CODE XREF: Destover_ XORV3ISUB3IA+32]Lj
mov dl, [eax]
xor dl, 73h
sub dl, 3ah
mov [eax], dl
inc eax
dec eCx
jnz short loc_uBu686
locret _L484694: ; CODE XREF: Destover_ XOR73SUB3A+24Tj
retn

Destover_ SOR7VISUB3A endp

BC-SUB API Obfuscation

This is a forward bytewise decoding where the each character value is subtracted from 0xBC to arrive at a cleartext
character.

This decoding is used instead of ChopString in some KorDllbot variants.

push ebp
mou ebp, esp
sub esp, 180h
push [ebp+1pString2] ; 1pString?2
lea eax, [ebp+itringl]
push eax ; 1pStringi
call ds:zlstrcpyn
cmp [ebp+5String1], @
lea eax, [ebp+Stringi]
jz short loc_ 18881259
loc_188812446: ; CODE XREF: sub_1888121E+39]j
mow cl, [eax]
cmp cl, "A°
j1 short loc_ 18881253
mou dl, BBCh
sub dl, cl
mow [eax], dl
loc_18881253: ; CODE XREF: sub_1888121E+2DTj
inc eax
cmp byte ptyr [eax], @
jnz short loc_18881246
loc_18881259: ; CODE XREF: sub_188@121E+26Tj
lea eax, [ebp+String1]
push eax ; _DUWORD
push [ebp+arg_A] ; _DUWORD
call GetProcAddress
leave

retn

DB-SUB API Obfuscation

This is a forward bytewise decoding where the each character value above ‘a’ and below ‘z’ is subtracted from
O0xDB to arrive at a cleartext character.

; int _ cdecl Destover_ DB_SubDecode{int, LPCSTR 1pString2)
Destover_ DB _SubDecode proc near ; CODE XREF: sub_40127D+2CTp
; sub_48127D+3CTp ...

Stringi = byte ptr -188h
arg_8a = dword ptr &
1pString?2 = dword ptr BCh
push ebp
mou ebp, esp
sub esp, 180h
push [ebp+lpString2] ; 1pString?
lea eax, [ebp+Stringl]
push eax ; 1lpStringt
call ds:1strcpyd
cmp [ebp+String1], @
lea eax, [ebp+Stringl]
jz short loc_4813FE
loc_4P13E6: ; CODE XREF: Destover_ DBE_SubDecode+3E]j
mov cl, [eax]
cmp cl, b’
jl short loc_4813F8
cmp cl, "y’
ig short loc_4813F8
mou dl, BDBh
sub dl, cl
mov [eax], dl
loc_4B13F8: ; CODE XREF: Destover_ DB _SubDecode+2DTj
; Destover_ DB _SubDecode+32Tj
inc eax
cmp byte ptr [eax], 8
jnz short loc 4813Ed
loc 4B13FE: ; CODE XREF: Destover DB SubDecode+26Tj
lea eax, [ebp+Stringl]
push eax

push [ebp+arg 8]
call GetProcAddress 8@
leave
retn
Destover_ DB_SubDecode endp

CharSwap API Obfuscation

This is an encoding where some character ASCIl values are increased or decreased by nine.

.text:@84017D0 ; int _ cdecl Destover_ CharSwap{int, LPCSTR 1lp3tring2?)

-text:@04017D0 Destover_ CharSwap proc near ; CODE XREF: DestoverRandom_ DeclareNetworkapis+261Tp
-text:0840817D0 ; DestoverRandom__DeclareMetworkapis+271Tp ...
-text:084817D8
_text:004817D8 Stringd
-text:084817D8 arg_ B

byte ptr -1886h
dword ptr 4

text:884817D0 1pString? = dword ptr 8

.text:@@4817D0

text:084817D8 mow eax, [esp+lpString2]

-text 08481704 sub esp, 188h

text:ae4817DA lea ecx, [esp+18Bh+String1]
-text:804817DE push eax ; 1pstring2?
-text:084817DF push ecx ; 1pstringt
-text:084817ER call ds:1strcpyh

-text:004B17E6 mow al, [esp+18Bh+String1]
text:084B17ER lea ecx, [esp+188h+String1]
-text:004017EE test al, al

.text:004817F0 jz short loc_ 481818
.text:@@4817F2

-text:004817F2 loc_L4B17F2: ; CODE XREF: Destover_ CharSwap+h6}j
-text:084817F2 mow al, [ecx]

-text:084817FL cmp al, ‘b’

text:084B17F6 j1 short loc_481818
-text:004017F8 cmp al, 'y’

text:084B17FA jg short loc_481818
-text:884817FC cmp al, 'i-

text:004817FE j1 short loc_481888
.text:8040180680 cmp al, 'p°

-text:00840818062 ig short loc_u4B1888
.text:0a401804 add al, ¢

-text: 004081806 jmp short loc_u4B1BBE

text:@B4B1888 ; - —————
-text:004018068
-text:00401808 loc_481808:
-text:004091808

CODE XREF: Destover_ CharSwap+2ETj
Destover_ CharSwap+321;j

.text:00461808 cmp al, |'r*

-text:08408180A j1 short loc_L4B1818

.text:0846188C sub al, 9

.text:B8a48186E

-text:0040186E loc_L4B188E: ; CODE XREF: Destover_ CharSwap+3atj
.text:0848188E mow [ecz], al

-text:084091818
-text:00401810 loc_481810:
-text:084091818

CODE XREF: Destover_ CharSwap+26Tj
Destover_ CharSwap+2ATj ...

-text:08481818 mow al, [ecxz+1]

.text: 00401813 inc ecx

-text:08401814 test al, al

text:08481816 jnz short loc_4B17F2
.text:@@401818

text: 00401818 loc_4@1818: ; CODE XREF: Destover_ CharSwap+20Tj
-text: 004091818 mow eax, [esp+1@8h+arg_#0]
text:ae40181F lea edx, [esp+18Bh+String1]
-text:084081823 push edx ; _DUWORD
-text:08481824 push eax 5 _DUWORD
.text:08481825 call GetProcAddress_8

-text: 00401828 add esp, 186h

text: 00461831 retn

CharSwap is used for obfuscation of both APIs and regular strings. Above figure shows API de-obfuscation.

@ [i4={C]

1 GekDirmeTpyef Upri
uDirme j SekFrueTrve
ueey PixcejjBEﬂenk

The CharSwapped APl names GetDriveTypeA, SetFileTime and Process32Next.

Intbox encoding

This encoding is used instead of ChopString in some Destover variants.

__int16 _ cdecl Destover_ IntboxDecode{int buffer, int bufferlength, int key_int}
{

int bufferlength_; 7/ edz@1

int i2; /f ecx@1

int vw5; /7 edi@i

__int1é6 result; // ax@2

signed int i1; // ebx@2

char sbox[256]; /7 [sp+Ch] [bp-184h]E2

int v9; /7 [sp+18Ch] [bp-4h]@1

signed int i; // [sp+11Ch] [bp+Ch]E1

bufferlength_ = bufferlength;
i?2 = -47 = (bufferlength + key int}) & BxFF;

us = @8;
u9 = -33 = (bufferlength + key int) & BxFF;
i = 8;
do
{
result = @x1D = {char){key int = {i + 1));
i1 = i++;

sbox[i1] = result;

while { i < 256);
if { bufferlength_ > 8)
{

do

{
#(_ BYTE #=)(u5 + buffer) "= shox[iZ];
result = u?;
i2 = (v? + i2?) & BxFF;
++05;

H
vhile { v5 { bufferlength_);
H

return result;

RC4+XOR encryption

This encryption is used by Volgmer2 on network traffic data.

unsigned int _ cdecl Uolgmer2 EncryptData{int key, int keylength, BYTE =output, unsigned int msglength)
{

unsigned int result; // eax@1

Uolgmer2_ RCACrypt(key, keylength, (int)output, msglength);

=output "= output[msglength - 1];

for { result = 1; result < msglength; ++result)}
output[result] "= output[result - 1];

return result;

KorDllbot / Joanap AES keys
“Bb102@jH45t3hg%6&G1s*2)3gCNwVr*Uel!Dr3hytgACHGf%ion”
“b n4rbhriq890v9=023=01*&(T-0Q325J1N;LK"

Koredos RC4 key
“A39405WKELsdfirpsdLDPskDORKbLRTP12330@35223%!”

Joanap PLAIN_CRYPT keys
“9025jhdho39ehe2”
“hybrid!@hybrid! @#”
“iamsorry!@1234567”

Destover “b076e058” RSA authentication key string

“b076e0580463a202bad74cb9c1b85af3fb4d1be513ccca3ae8b57d193be77b4ab63802b3216d3a80b00827b693593
a76be884f41b491eelf6136b3755add91e2de9b0f5b3849d463fcd7b9a3b6cd0744caf809f510ee04ab3c714f53422d2
4f33361f75145b08286d2d7d99704684ed1d25fd5a9dc7b993f8e4d074234fd82d3”

Destover “Volgmer.A” RSA authentication key string

“bc9b75a31177587245305cd418b8df78652d1c03e9da0cfc910d6d38ee4191d40bd51483321ebed4595f799da8421
5ebd7137c9e267f54a342048e510fddfdec2404764fdf128c330862e747d7a98cd557a15500051a5b6651572a398bbe
5a51d52dc7af3b34b06b68c7974b9f8e45fd3636fd628c1dbcf65bbb68b2dd058017”

Destover “Volgmer.B/C” RSA authentication key string

“b50a338264226b6d57c1936d9db140ba74a28930270a083353645a9b518661f4fceal60d73469b8beabc14b90e907
88c28f2d7c660e43db2e6f81aa05a08cae4517845badb9fc614e77e39d502003fcc6712d45428f339bcc06787745f734
1e9884fae803ad2fbb9670acb15b2da62735081fb2bc2a9b8b434dbe211a4b59b03”

Destover “b59d1659” RSA authentication key string

“b59d165982e3d5721c4d40195f85aedf2a12d6616bella2c19fal1821604edc4675bdcadfob9cbfb27244203ca8e21
500ae592d7bb2776e8ed9179dc1fb47819f140d0052f28865c201a036f3f698d0c256c3446e09c83eda056c91eede25
927148a3521439d57b0682a4c2723bd18dcd37c0f9b08ff8c7c3bc37684d2b4d241”

Destover “b8ac0905” RSA authentication key string

“b8ac0905cda0360fc115f614119da76d84e2277762bd7558b2650a79013fb50138f732d5a03730d7d5b173a12d9a8
42353ca433758d417fa8b452ec075f87bf76a7056ecdd2b063432f414e4ad52fdb078b8a9d84635774e5234ce28a762
d91aflcb9c026ffd68b88f1032c9c2c8fald187a054f906781c56fb07b0f6bb908ch”

Destover “e4004c1f” RSA authentication key string

“e4004c1f94182000103d883a448b3f802ce4b44a83301270002c20d0321cfd0011ccef784c26a400f43dfb901bca753
8f2c6b176001cf5a0fd16d2c48b1d0clcf6ac8eldabbec3bdelf96b0564965300ffaldOb601eb2800f489aa512c4b248c
01f76949a60bb7f00a40bleab64bdd48e8a700d60b7f1200fa8e77b0a979dabf”

Destover “Randomdomain.A/B” SSL remote server names contained in Client Hello

wwwimages2.adobe.com
www.paypalobjects.com
www.paypal.com
www.linkedin.com
www.apple.com
WWW.amazon.com
www.adobetag.com
windowslive.tt.omtrdc.net
verify.adobe.com
us.bc.yahoo.com
urs.microsoft.com
supportprofile.apple.com
support.oracle.com
support.msn.com
startpage.com
sstats.adobe.com
ssl.gstatic.com
ssl.google-analytic.com
srv.main.ebayrtm.com
skydrive.live.com
signin.ebay.com
securemetrics.apple.com
secureir.ebaystatic.com
secure.skypeassets.com
secure.skype.com

secure.shared.live.com
secure.logmein.com
sc.imp.live.com
sb.scorecardresearc.com
s1-s.licdn.com
s.imp.microsoft.com
pixel.quantserve.com
p.sfx.ms
mpsnare.iesnare.com
login.yahoo.com
login.skype.com
login.postini.com
login.live.com
|.betrad.com

images-na.ssl-images-amazon.com

fls-na.amazon.com

extended-validation-ssl.verisign.com

daw.apple.com
csc.beap.bc.yahoo.com
by.essl.optimost.com
b.stats.ebay.com
apps.skypeassets.com
api.demandbase.com
ad.naver.com
accounts.google.com

Destover “Randomdomain.C” SSL remote server names contained in Client Hello

myservice.xbox.com
uk.yahoo.com
web.whatsapp.com
www.apple.com
www.baidu.com
www.bing.com
www.bitcoin.org
www.comodo.com
www.debian.org
www.dropbox.com
www.facebook.com
www.github.com
www.google.com
www.lenovo.com
www.microsoft.com
www.paypal.com
www.tumblr.com
www.twitter.com
www.wetransfer.com
www.wikipedia.org

Destover “Volgmer2” SSL remote server names contained in Client Hello

ad.naver.com
all.baidu.com
WWW.amazon.com
www.apple.com
www.bing.com
www.dell.com
www.hp.com
www.microsoft.com
www.oracle.com
www.paypal.com
WwWw.uc.com
www.yahoo.com

(Note that domain names included in Destover SSL handshakes are legitimate and used only as disguise.)

APPENDIX: THE MICROSOFTCODESIGNINGPCA SELF-SIGNED SAMPLE CLUSTER

Group: 03c64293830f4c8f43666b3901d02332

87bae4517ff40d9a8800badd2fa8d2fodf3c2e224e97c4b3c162688f2b0d832e

KorDllIbot v1.1 backdoor service, listening on port 179

Group: 3d348a74aab5359d422da7fad24b8c2c

a7d088bf3ae2a82f711f816922779ac7b720170298ac43c76cf8c6elaa8dfadd

Proxymini 0.2.1, Luigi Auriemma

fd95e095658314c9815df6a97558897cb344255bd54d03c965fa4cbd16d7bafd

NoiseSin data stealer

82169a2d8f15680c93e1436687538afa0ld6a2ecfe7a7cb613817c64al1a82342

NoiseSin data stealer

792b484ac94f0baefc7e016895373ba92c2927e3463f62adb701ddbe4c90604c

KorDllbot backdoor (Unobfuscated API loading)

162d6223c1c1219ca81a77e60e6b776058517272fe7cac828a3f64dcacd87811

KorDllbot backdoor (XOR-obfuscated API loading)

56e0b1794a588e330e32a10813cdc9904e472c55f17dd6c8de341aeaf837d077

Keylogger

c16a66c1d8e681e962f03728411230fe7c618b7294¢c143422005785d3a724ecd

Dropper for
162d6223c1c1219ca81a77e60e6b776058517272fe7cac828a3f64dcacd87811

57b4c2e71f46fe3e7811a80d19200700c15dd358bdf9d9fdf61f1c9a669f7b4b

NoiseSin data stealer

Group: 09b075a5393e93a3479a00051714de52

2d9edf45988614f002b71899740d724008e9a808efad00fa79760b31e0a08073

Joanap backdoor and SMB worm

006e0cc29697db70b2d4319f320aa0e52f78bf876646f687aa313e8ba04e6992

Joanap backdoor and SMB worm

ddal36bc51670e57a4b2f091f83ab7b44291a9323d5483abd9e91b78221e027f

Data harvester

Group: 17522941a80c25ab4c9cfe5f28d9361f

163571bd56001963c4dcb0650bb17fa23ba23a5237¢c21f2401f4e894dfe4f50d

SMB worm and backdoor dropper for
f901083da11222e3221f5d3e5d5f79d7ea3864282ea565e47c475ad23ef96ff4

Group: 9d0550e00b6d5da9407e28bcad336cc9

3d2a7ea04d2247b49e2dcad63al79ae6a47237eddbfd354082f1417a63e9696e

Joanap backdoor and SMB worm

ea46ed5aed900cd9f01156alcd446cbb3e10191f9f980e9f710ealc20440c781

Joanap backdoor and SMB worm

Group: e7d382fb2elea4ad4a8d193f4014e514

6e8a2329567cdbbba68460ccb97209867d7508983cb638662b33bfe90d0134d4

KorDllbot backdoor dropper, disguised as a Korean Windows hotpatch

af7b53ce584b83085488e1190e1458948eaf767631f766e446354d0d5523e9d0

Dropped KorDlIbot component

69300a42e055f68a8057192077fbbef3be5b66514ea9ca258b077c5¢c7e9417a9

KorDllbot backdoor dropper

Group: 14ccfa0756059e93469bfef60935d999

e0cd4eb8108dab716f3c2e94e6c0079051bfe9c7c2ed4fcbfdd16b4dd1c18d4d

SMB worm and backdoor dropper for
a795964bc2be442f142f5aea9886ddfd297ec898815541be37f18ffeae02d32f

96¢35225dc4cac65ccd3abeec6cdecce3d13b3bda286c8c65cad5f2879f696ad2a

Backdoor dropper for
0075d16d8c86f132618c6365369ff1755525180f919eb5¢c103e7578be30391d6

Group: ¢23d8473¢335159a435b5¢920b961971

29355f6d4341089b36834b4a941ef96b3bf758a4fe35fbb401cc4e74b9b1c90f

Yahoo IM backdoor service

9e226a5eb4del9fcb3f7ecc3abcf52ea22a1f1a42a08dd104f5f7a00164e074e

Yahoo IM backdoor exe

041605e498bb41b07d2d43003152cc2a992e7e2ade7a47ee9aef2570bdb16d94

Yahoo IM backdoor exe

82fe3a8f2248643505e8de1977b734f97eb38225e6d3df6ea8f906430514b4f5

Yahoo IM backdoor exe

Group: a02925¢39912b68a4a0555246a031abb

08203b4ddc9571418b2631ebbc50bea57a00eadf4d4c28bd882ee8e831577a19

Joanap dropper, backdoor and SMB worm

Group: f487c2cfd330cf8e4f9171672d99cecd

8e3c3398353931¢513¢32330c07f65b6ee6f62fc7a56edac7cbededblbfdc74e

KorDllbot backdoor dropper

bb4204dd059849848e9492523ce32520bf37cb80974320c0ca71f3b79e83f462

Downloader and backdoor

2f8c448bb05ed1218e638c61bb56ebb953b962ed5e065b08fa03cfcf6f6alc68

Downloader and backdoor

Group: e4046a19ef86378a43907279d072e5fb

f98c67c4cf9b02acaabb555664a0d9d648ale43f681f9bf234af066d5451be8d

KorDllbot 1.05.2 downloader and backdoor

Group: 33f8c3f1b7df61b949ed876422818bb1

1226d3635c1a216be9316c9dfa97f103c79ed4c44397e5e675d3b1e37786bf31

KorDllbot backdoor

Group: de85322cb067alaadlaf54c2de87fb03

c5baece9978649659220af2681a3a43b83f8ae47afdd3862185d1fec7735a7d2

Dropped KorDlIbot component

a4b982d4e7137d7d3687f3127e6d5c2a8b2belf53daeebce9175461c7e6a53cd

KorDllbot backdoor dropper

9bcecdbafa54ebaf343b7eb82a86ceeel189cc10bc91fa83f8cdc98cc5aaefll7

KorDllbot backdoor dropper, disguised as a Korean Windows hotpatch

Group: dde039353663cdb14337e6793ca2a8cf

b7f2595dd62d1174ce6e5ddf43bf2b42f7001c7adec3c4cbe3359e30c674ed83

KorDllbot backdoor

Group: 940888706c199a8342ef85eb60fecbb6

b039383a19e3da74a5a631dfe4e505020a5c5799578187e4ccc016c22872b246

KorDllbot backdoor service installer

f4a06dd6ebfd0805d445f45ce33d7bbad4a33c561111c¢39a347024069a78169e9

KorDllbot backdoor service

3acaea01fd79484d5a72c72e1b9c2fbf391145fb1533¢c17a8a83e897d877782

Removes backdoor service

81067f057d523fdcddf7df1da39a7c3614c45f6bff6bd387274c049244efda3b

Removes backdoor service

Group: 7940994b304aalac4d2d64e6b7b8890d

218ee208323dc38ebc7f63dba73fac5541b53d7ce1858131fa3bfd434003091d

KorDllbot backdoor service installer

73edc54abb3d6b8dfébdle4a77c373314cbe99a660c8c6eea770673063f55503

KorDllbot backdoor service

Group: 328e8fb5f3ec48894f6af0eb0a821d01

6d5d706f5356e087f5961ba2ed808c51876d15c2e09eb081618767b36b1d012f

KorDllbot backdoor service

Group: 7301505ed41ad49a4b379588d64be787

7a538c3eed1f01b62a19226750c1369e4e€9210b1331d5829ca91fe2b69087f06 Downloader
6059cb08489170aea77caf0940131e5765b153a593e76d93a0f244e89ddb9e90 Uploader
Dropper for

€97a8909349a072ed945899fbe276fc27e9c5847bc578b0abccf017da3fd680c

7a538c3eed1f01b62a19226750c1369e4e€9210b1331d5829ca91fe2b69087f06

Group: f0eeae68ca747c804b6a1d078525ebd1

c4852ddba88e5c53a8711c4c7540b7ac98dac6b9e31d10dd999a81a4f0e117c3

KorDllIbot backdoor service

3ebb3d8292alaa5dc81b028beeefdec0f0448516d6225b336ee37d550ab8c3ab

KorDllIbot backdoor service

Group: 61fd3dc8a14f3a9f4ffbb82b6b9165c2

87e68055959328d857b287e797896d9a96695b69ed300a843eee73319427b3b3

KorDllbot 1.03 backdoor service

94e14a85a2046b40842f6c898c5f6c3200de3d89c178a9a9f9a639c1d3deee9

KorDllbot 1.04.4 backdoor

Group: 00f70a83e7c9fbb54ea74e8bbc14c609

€d8c729da299b29618819afeef8b2a79451e6c3d35dea3769ef638c649c69001

KorDllbot 1.04.4 backdoor service

Group: b46daf51cd766faad87311beac043847

9d9889585f1a4048a3955d3a9cead2f426a509afaeacad27540382cc3266f0fa

KorDllbot backdoor service

Group: 10cc28f0b769aba64fe81a0cd640122f

888844c040be9d0fc3dab00dd004aa9e8619f939aff2eba21e4f48ca20e13784

KorDllbot 1.2 backdoor service

Group: db8c962c5c8366854f9b052dab52d54a

d7044a35e76543a03cd343d71652c7bbd9a28e246d7f3a43f4a2e75cd0ef7366

KorDllbot 1.04.5 backdoor service

Group: 206f156f15bb3c814f24bebf69ec04c7

50974c15a546e961fbee8653e5725960a77b79e0f7c8eadf3b6d35ba3ad6dd57

KorDllbot backdoor service

Group: 7c4a1d98042a2d814c93e8d8f78eebfe

bfb5fa2a09ac60efcc0e9f05e781bd22cae0b8f6ba356d7819285f073845a0eb

KorDllIbot 1.03 backdoor service

Group: 888bade41cd689al4eed8b2dbe87428e

9bc8fe605a4ad852894801271efd771da688d707b9fbe208106917a0796bbfdc

KorDllbot service dropper. Drops
0a27acaaebc7db0878239b40ab9d2feff13888839c05a03348fc09b78debced5

7b171a160cb2al17f87cabadalc62bdcd9e718f987b7278d3effe0614b5b51bed

KorDllbot service dropper. Drops
0a27acaaebc7db0878239b40ab9d2feff13888839c05a03348fc09b78debced5

0a27acaaebc7db0878239b40ab9d2feff13888839c05a03348fc09b78debeedS

KorDllbot backdoor service

APPENDIX: MALWARE HASHES

KorDllbot-related samples

87baed517f£f40d9%9a8800badd2fa8d2f9df3c2e224e97¢c4b3cl162688f2b0d832e
£d95e095658314¢c9815df6a97558897¢cb344255bd54d03¢c965fadcbdlod7bafd
82169a2d8f15680c93e1436687538afalldoazecfe7a7cb613817c64ala82342
792b484ac94f0baefc7e016895373ba%92c2927e3463f62adb701ddbedc90604c
162d6223c1cl219ca8la77e60e6b776058517272fe7cac828a3f64dcacd87811
56e0b1794a588e330e32a10813cdc9904e472c55f17dd6c8de341aeaf837d077
cl6a66cl1dB8e681e962f03728411230fe7¢c618b7294c143422005785d3a724ec4
57b4c2e71f46fe3e7811a80d19200700¢c15dd358bdf9d9fdf61fl1c9a669f7bdb
2d9%9edf45988614f002b71899740d724008e9%9a808efad00fa79760b31e0a08073
006e0cc29697db70b2d4319f320aa0e52f78bf876646f687aa313e8bal4e6992
ddal36bc51670e57a4b2£f091£83ab7b44291a9323d5483abd%e91b78221e027f
163571bd56001963c4dcb0650bbl7fa23ba23a5237¢c21£2401£f4e894dfed£50d
3d2a7ea04d2247b49%9e2dcad63al79ae6ad7237eddbfd354082f1417a63e9696e
ead6ed5aed900cd9f01156alcd446cbb3el0191£9£980e9£710ealc20440c781
6e8a2329567cdbbba68460cchb97209867d7508983¢cb638662b33bfe90d0134d4
af7b53ce584b83085488e1190e1458948eaf767631£766e446354d0d5523e9d0
69300a42e055f68a8057192077fbbef3bebb66514ea9ca258b077c5¢c7e9417a9
e0cd4eb8108dab716f3c2e94e6c0079051bfe9c7c2ed4fcbfddlob4ddlcl8d4d
96c35225dc4d4cacb5bccd43abeebedece3dl3b3bda286c8c65cadbf2879f696ad2a
29355f6d4341089036834b4a%41lef96b3bf758a4fe35fbb401lccde74b9%b1c90f
9e226abebddel9fcb3f7ecc3abcfb2ea?22alf1a42a08dd104£f5f7a00164e074e
041605e498bb41b07d2d43003152cc2a992e7e2ade7ad7ee%9aef2570bdbl6d94
82fe3a8f2248643505e8del1977b734f97eb38225e6d3df6ea8f906430514b4f5
08203b4ddc9571418b2631ebbc50bea57a00eadf4d4c28bd882ee8e831577a19
8e3c3398353931¢513¢c32330c07f65boeebfb62fc7ab6edac’cbededblbfdcT4e
bb4204dd059849848e9492523¢ce325200b£37¢cb80974320c0ca71£3b79e83f462
2f8c448bb05ed1218e638c61bb56ebb953b962ed5e065008fal03cfcfofoalco8
£98c67cd4cfo9b02acaabb555664a0d9d648aled3f681f9%0f234af066d5451be8d
1226d3635¢c1a216be9316c9dfad97f103c79ed4c44397e5e675d3b1e37786bf31
cb5baece9978649659220af2681a3a43b83f8aed7afdd3862185d1fec7735a7d2
ad4b982d4e7137d7d3687£3127e06d5c2a8b2belf53daeebced175461c7e6a53cd
9bcecdoafab54eb4£343b7eb82a86ceeel89ccl0bc91fa83£f8cdc98cchaaefll”
b7£2595dd62d1174ce6e5ddf43bf2b42£7001c7adec3cd4cbe3359e30c674ed83
b039383al19e3da74a5a631dfed4e505020a5¢c5799578187e4d4ccc016¢c22872b246
f4a06dd6ebfd0805d445f45ce33d7bbada33¢c561111¢39a347024069a78169%e9
3acaeal0l1£d79484d5a72c72el1lb9c2fbf391145fb1533¢c17a8a83e897d8777£82
81067£057d523fdcddf7dflda39%9a7¢c3614c45f6bffobd387274c049244efda3b
218ee208323dc38ebc7f63dba73fac5541b53d7¢cel1858131fa3bfd434003091d
73edc54abb3dob8dfbbdleda77¢c373314cbe99%9a660c8cbeea7’70673063£55503
6d5d706£5356e087£5961ba2ed808c51876d15¢c2e09eb081618767b36b1d012f
7a538c3eedl1f01b62a19226750c1369e4e9210b1331d5829ca91fe2b69087£f06
6059¢cb08489170aea77caf0940131e57650153a593e76d93a0£f244e89ddb9%e90
e97a8909349a072ed945899fbe276fc27e9¢c5847bc578b0abccf017da3fde80c
c4852ddba88e5c53a8711c4c7540b7ac98dac6b9e31d10dd99%a81a4f0ell17c3
3ebb3d8292alaa5dc81b028beecefdec0£f0448516d6225b336ee37d550ab8c3ab
87e68055959328d857b287e797896d9a96695b69ed300a843eee73319427b3b3
94e14a85a2046b40842£f6c898c5f6c3200de3d89c178a9a9f9%9a639c1d3de%ee?
cd8c729da299b29618819%afeef8b2a79451e6c3d35deal3769ef638c649¢c69001
9d9889585f1a4048a3955d3a9%cead2f426a509%afaeacad27540382cc3266f0fa
888844c040be9d0fc3dab00dd004aa%9e8619f93%aff2eba’2l1e4f48ca20e13784

d7044a35e76543a03cd343d71652¢c7bbd%a28e246d7f3a43f4a2e75cd0ef7366
50974c15a546e961fbee8653e5725960a77b79%9e0f7c8eadf3b6d35ba3ad6bdds7
bfb5fa2a09%ac60efcc0e9f05e781bd22caelb8f6ba356d7819285f073845a0eb
9bc8fe605a4ad852894801271efd771da688d707b9fbe208106917a0796bbfdc
Tbl71lale0cb2al7f87cabadalc62bdcd9e718£987b7278d3effe0614b5b51bed
0a27acaaebc7db0878239040ab9d2feff13888839¢c05a03348fc09b78debced5

Joanap-related samples

2908c57226b70fc7e095bb8bed4611d923f0bcefc661ebae51821686130b497£8
66d44e2bc7495662d068051c5a687d17¢c7e95¢c8f04acb0£f06248b34cd255cd25
fae77c173815b561ad02d8994d0e789337a04d9966dd27a372fd9055f1ach8bl
clc56c7eb2f6b406df908ae822a6ea936f9cc63010ee3c206186f356f2d1aa%4
4c5b8c3e0369eb738686c8allldfed60e26eb3700837¢c941ea2e9afdl3255981e
113d705d7736¢c707e06fb37ac32808003976838d0a7b021£d5fb299896c22c7¢c
labc3e5643d7e22554ac0a543c87a2897ead4ea5al7bc080943a310a391e20713
0b860af58a9d2d7607£09022aa69508b0966alcc8d953d3995a5fe07f8fabecac
5d73d14525ced5bdf16181£f70£f4d931b9%c942clael6e318517dlcd53f4cdbead
c34ad273d836b2f058bbd73ea9958d272bd63f4119dacacc310bf38646£f£f567b
500c713aa82allcd4c33e9617cad4241fcef85661930e4986c20523375%9a55ae8
5f5acf76a991c1ca33855a96ec0ac77092£2909e0344657fe3acf0b2419dleea
co6d96bed6ce3doleelcbl36d53c4fade7e954e74bfd2e34£9£15¢c4df58£c732d2
d558bb63ed9f613d51badd8fea’e8ea5921a9e31925¢cd163ec0412e0d999d£58
006e0cc29697db70b2d4319f320aa0e52f78bf876646f687aa313e8bal4e6992
2d9%9edf45988614£f002b71899740d724008e9%9a808efad00£fa79760b31e0a08073
3d2a7ea04d2247b49%e2dcadob3al79%ae6ad7237eddbfd354082f1417a63e9696e
ead6ed5aed900cd9f01156alcd446cbb3e10191£f9f980e9f710ealc20440c781
£4113e30d50e0afc4fa610a3181169%90b03f6766aea633ed8c0c0d1639dfc5b29
08203b4ddc9571418b2631ebbc50bea57a00eadf4d4c28bd882ee8e831577a19
a3992ed9%9a4273de53950fc55e5b56¢cc5b1327ffee59%1cead9ed5679adec84d008
575028bbfdlc3aaff27967¢9971176ae7038902f1a67d70def55ae8456e6l66d
428cfoecladc947b51ec099%9a656£575ced2f67737ee53f3afc3068a25adb4cOd
£53e3e0b3c524471b1f064aabd0£782802abb4e29534albolabb25ad8ec30e79

Destover “b076e058” samples

Droppers:
6e93d7bdb01af596019fa48986544ca24aa06463f17975a084b28ce%9ab3cf910
e0066ddc9e6f62e687994a05027e3eaal02f6f3ad6d71d16986b757413f2fb71c

Dropped components:

9ec83d39d160bf3ead4d829fa8d771d37b4f20bec3a68452dfc9283d72cee24f8
10d3ab45077£01675a814b189d0ac8al57be5d9f1805caa2c707eecbb2cbflac
33207£4969529ad367909e72e0£9d0a63c4d1db412e41b05a93a7184ec212afl
389ee412499fd90ef136e84d5b34ce516bda9295fa418019921356£35eb2d037
e0celfdb9ca6l747467cee56307£9eal15dd6935£399837806£775e9b4£40e9ca
54ab7e41e64eb769b02b855504c656eaaff08b3f46d241cb369346504a372b4f
47830371f6£3d90d6a9%fbe39e7f8d43a2e126090457448d0542fcbecd4982afd6

Destover “Volgmer” samples

Droppers:

37dd416ae6052369ae8373730a9189%9aefd6d9%eb410e0017259846d10ac06bffb
87db427b1b44641d8cl3be0bala2b2£354493578562326d335edfeb998c12802
€40a46e95ef792cf20d5¢c14a%9ad0b3a9%5c6252£96654£392b4bc6180565b7bl1l
53e9%bcab505652e£23477e105e6985102a45d9%9a14e5316d140752df6£3ef43d2d
8fcd303e22b84d7d61768d4efa5308577a09cc45697£7£54bede528bbb39435b

Dropped components:

6dae368eecbccl0266bba32776c40d9ffab5b50d7£6199%9a9b6c31d40dfe7877d1
b987f7e6467704029c7784e9%9peb%ad3aabel375a661dcl0b5f3dl1lcha8fclef2
1d0999ba3217cbdb0cc85403e£75587£747556a97dee7c2616e28866db932a0d
9f177a6fbdeabaf876ef8al0bf954e37544917d9%aabal04680a29303f24ca5c72c
78af649d3d6a932bcf53cfe384ceb6bf9441£f4d19084692b26b7e28b41£f7a91bd
5d617£408622afc94blcad4c21b0b9c3b17074d0fcd3763ee366ab8b073fc63e9
fee0081df5ca6a21953£f3a633f2f64b7c0701977623d3adec36fff282ffe73b9
c5946116£648e346b293e2e86c24511a215ebe6db51073599%0bba3e523fb0d0a8
eab55bded6438cd7b8a82d6447a09bbal078ded33049fca22d6l6a74bb2cad08f
f£f2eb800ff16745fc13c216ff6d5¢cc2de99466244393f67abbeacf8189%ae01dd

Destover “Windowsupdatetracing” samples

Droppers:

83e507104ead804855d07bc836af4990542dleac5ac2a8ce86£985d082199f6f
d94ceadeb521452864ae8daae9d6b202a79d4761£755¢c7¢c769%9ec4el03c7¢c3127d
bebf6266e765f7a0eefcde7¢c51507¢cc9f6e3b5d5082a001660454e4e84f6e032
4166f6637b3b11f69cccbeb775f9€e6987a5a30475¢c54db189p837ee3fbbf0dl
eebl46ebbc3f144£5a6156d07322a696eead9c4895a9%9a6£94212d24056acd4lc

Destover “Messagethread” samples

Droppers, var A

6959af7786a58dd1£f06d5463d5bad472396214d9005£ce8559d534533712a9121
68006e20a2£37609f£fd0b244af30397e18df07483001150bcc685a9861e43d44
dB8fedefl23b3d386£0917f11db9fae0956££febbl6a%9aaad8805£72309437d066

Droppers, var B

2368ee0e0001599p7789d8199¢c7b19£362a87925118ae054309d85£960d982ec
6e3db4da27f12eabal005217eba7cd9133bc258c97fe44605d12e20a556775009
98abfcc9a0213156933ccd9cb0b85dc51f50e498dbfdec62f6a66dc0660d4d92
d36£79d£9a289d01cbb89852b2612£d22273d65b3579410d£8b5259049808a39

Destover “b8ac0905”

X86 Service DLL sample:
696ff9ddalce759e8ff6dd96b04c75d232e10fe03809ba8abac7317£477£7c£5

Destover “b59d1659”

X64 Service DLL sample:
7501c95647cef0c56e20c6d6a55de3d23£428e8878a05a603a0b37ea%987a74e2

Destover “e4004c1f”

HWP dropper documents:
3c3d2ab255daa9482£fd64£89c06cdbfff3b2931e5e8e66004£93509b72cflcc?
7d9631a62ae275c58e7ad2a3eb5edcdeac22cff46c077410ad628be6c38dd5e08

Dropper executables:
cad4b4a3011947735a614a3dc43b67000d3a8deefb3fffa95048£f1d13032f2aea
31a76629115688e2675188d6f671beacfe930794d41cf73438426cc3e0lcebae

Dropped components:

7ceal8dce8eb565264cc37bfaddeal3e87660b5cea7’725e36b472bafdcfel5abl
757¢cd920d844fdcb04582a89055f62b9%9a3e9bf73804abf94c9a9%9e15d06030b93
8a4f000049ad2a6bcdeecac823c087blc6e68c58b241¢c70341821cceccdf0f2dl”7
0654d112¢c17793c7a0026688cee569e780b989%9a9eb509585a977e£d326dc2873
453d8bd3e2069c50703eb4c5d278aad02304d4dc5d804ad2ec00b2343feb7a4
1£689996439db60970£4185f9¢cfc09f59bfe92650bal9%0da38c7b1074c3e497b

Destover “Duuzer” samples

X86 samples:

029f93b7b7012777ee9fb2878d9c03b7fc68afadlb52cdc89b28a7¢a501a0365
5831e614d79£3259fd48cfd5cd3c7e8e2c00491107d2¢c7d327970945afcb577d
6b70aa88c3610528730e5fb877415bc06al6£15373¢c131284d5649214cd2e96b
9b4c90caB8906e9feab3c9ea’7a725dbbfcbbelcabc2a20bec2e8cl1749b0000ats
bO0cfaab0140£3ea9802dc6ed25bf208a2720fb590733966b7a3e9264a93a4e66
b3c0b7e355bee34cdb73d0bbdblbalb61797c035db31£0c82b19f%aaba7abec?
36844e66e5f4d802595909e2cbe90a96ad27dabb254af143b6611ab9%ee85al3e
defeea9eeae3d668897206eeccbl444d542ea537cab5c2787f13dd5dadd0ebaaa
5b28c86d7e581e52328942b35ece0d0875585fbb4e29378666dlaf5be7f56b46
66df7660ddae300b1£fcf1098b698868dd6f52db5fcf679fc37a396d28613e66b
72008e5f6aab8d58e4c8041cde20ee8a4d208c81le2b3770dbae247b86eb98afe
822a7be0e520bb490386ad456db01f26c0f69711bdacolba2cb892d5780fe38f
899f£9489dde2c5f49d6835625353bfe5eal8ca3195¢ca01362987a9d4bdacle2d
8b50d7d93565aab87c21e42af04230a63cd076d19£8b83b063ef0£61d510adc?
90d8643e7e52f095ed59ed739167421e45958984c4c9186c4a025e2fd2be668b
ac27cfaz2f2a0d3d66fea709d7ebb54a3a85bf5134d1b20c49e07a21b6df6255a
c5be570095471bef850282c5aaf9772f5baa23c633fe8612df41f6dlebedb565
ce0e4d43c2b9cbl130cd36£1bc5897db2960d310c6e3382e8labfa9a3f2e3b781d7
facb32efc05bc8cd4f3cb3baab6824db0f7effc56c02dbc52c33bafe242aldef77
763d1cb589146dd44e082060053ffbf5040830c790e004£f848a9593d6bel24ac
02d1d4e7acd9d3ec22588d89%9aed31¢c9a9d55547ef74fa37496590610893£5405
47181c973a8a69740b710a420ea8f6bf82ce8ab613134a8b080b64ce26bb5db93
e187811826b2c33b8b06bd2392be94a49d068da7f703ac060eedfaffde22c2fe

X64 samples:

2811fdceb8aB8aal3bbf59c0b01a43bdlf2aee675a8£20d38194258046987e5fa
39e53ba6984782a06188dc5797571897£336a580b8d36020e380aabcd8f1cd40a2
530a0£370£6£3b78c853d1lelabe7105f6a0f814746d8al65c4c694a40c7ad09%a
7a2a740d60bd082c1lb50ab915ef86cc689bal3al25¢c35acl2b24e21aal18593959
eaead5f8bfb3d8ea39833d9dcdb77222365e601264575e66546910efe97cba9d9
€ed9322ed9fb43a9a743b54cc6f0daz22daldbbc58e87bel7fd2efe5e26c3ef8a
ef07d6a3eb4a0047248c845be3da3282c208ede9508a48dbb8128eacc0550edf
477ca3e7353938£75032d04e232eb2c298f06£95328bcalal34fceld8c9d12023
5a69bceB8196b048f8b98£f48c8£f4950c8b059¢c43577e35d4af5f26¢c624140377¢
89025f9a454240a3f52de%0f6£9a829d2b4af04a7d%9e9£f4136£920£7e372909b
a01bd92c02c9ef7¢c4785d8bf6lecff734e990b255bba8e22d4513£35£370£d14
b93793e3f9e0919641df0759d64d760aa3fdea9c7£6d15¢c47bl3ecd87d48e6a9
d589043a6f460855445e35154c5a0£f£f9dbc8ee9e159%9ae880e38calleaz2b9a%94f

Destover “Randomdomain” samples

X86 samples:

92cc25e9a87765586e05a8246f7edb43df1695d2350ed921df403bdecl12ad889
f2al4c5ef6669dleb08fababb47a4b13£f68ec8847511d4c90cdcab07b42a5ct3
520778a12e34808bd5cf7b3bdf7ce491781654b240d315a3a4d7e££50341£fb18
eb55fff05de6f2d5d714d4c0fa90e37e£59a5ec4d90£df2d24d1cb55e8509b065
e506987c5936380e7felebl625efed8b431b942f61£5d8cf59655dc6a%afc212
2477£5e6620461b9146b32a9%049def593755ac9788fcdbeeece81lbf248aaz2e92a
£69747d654acc33299324el1da7d58a0c8adbd2ded64ec817ad201452a9fadb54
44884565800eebf411858611337100b4a42a99d80b6a74436bf788c0e210b9£50
2£629c3c65c286¢c7f55929e3d0148722¢c768c730a7d172802afed496c0abdo83
b5e1740312b734£fb70a011b6fe52c5504c526a4cccbhb55e154177abe21b1441c9

X64 samples:

0el162a2f07454d65eaed0c69e6c91dd10d29bdb27e0b30181211057661683812
ab53e33c77ecb6c650ee022a1311e7d642d902d07dd519758£899476dbaae3e49
c95eaedaafd8041bb0fead14bdebc0£893£f54cdec0£52978bel3£7835737de2a
da255866246689572474d13d3408¢c954b17d4cc969c45d6£45827799%9e97edl116
8465138c0638244adc514b2722fcb60b2a26a8756aa7d97£150e9bdc77e337cc

Destover “FormBoundary” sample

77a32726a£6205d2799909a564dd7b020dc0a8£697a81a8£5970971140e28976

Destover “BasicHwp” samples

HWP dropper document:
794b5e8e98e3f0c436515d37212621486£23b57a2¢c945¢c189594c5b£88821228

Droppers:

c248da81ba83d9%e6947c4bf£3921b1830abda35fed3847effe6387deb5b8ddbb
794b5e8e98e3£f0c436515d37212621486£23b57a2c945¢c189594c5b£88821228
fbalb8bdclbed44dl100ac31b864830fcc9d056£1£5ab5486384e09bd088256dd0

Dropped components:
c3£5e30b10733c2dfab2fdl143cab5344345¢cc25e42fbb27e2c582bal086£e3326

Destover “Volgmer2” samples

Droppers:

1ee75106a9113b116c54e7a59549500650809e0bb4dd0a91dc76£778508c7954
£71d676590af0569143874d5d1c5a4d655¢c7d296b2e86belb8£931c2335c0cd3

Dropped components:
96721e13bae587¢75618566111675dec2d61£f9f5d16el73e69%bb42ad7cb2dd8a

APPENDIX: C&C DATA

Joanap-related C&C addresses

110.164.115.177
118.102.187.188
118.70.143.38
119.15.245.179
122.55.13.34
168.144.197.98
189.114.147.186
196.44.250.231
201.222.66.25
60.251.197.122
62.135.122.53
62.150.4.42
62.87.153.243
63.131.248.197
63.149.164.98

Volgmer C&C addresses (dynamic normal, hardcoded bold)

103.16.223.35
113.28.244.194
116.48.145.179
117.239.214.162
12.217.8.82
123.176.38.17
123.176.38.175
134.121.41.45
186.116.9.20
186.149.198.172
190.210.39.16
195.28.91.232
199.15.234.120
200.42.69.13
200.42.69.133
203.131.222.99

64.71.162.61
66.210.47.247
69.15.198.186
72.156.127.210
75.145.139.249
78.38.221.4
80.191.114.136
81.130.210.66
81.83.10.138
83.211.229.42
92.253.102.217
92.47.141.99
93.62.0.22
94.28.57.110
96.39.78.157

206.123.66.136
206.163.230.170
212.33.200.86
213.207.142.82
220.128.131.251
24.242.176.130
41.21.201.101
64.3.218.243
78.93.190.70
83.231.204.157
84.232.224.218
89.122.121.230
89.190.188.42
200.87.126.116
194.224.95.20

Destover “MessageThread” C&C IP addresses:

101.76.99.183
112.206.230.54
124.47.73.194
165.138.120.35
175.45.4.158
177.189.204.214
187.176.34.40
202.182.50.211
203.131.222.102
208.105.226.235
209.237.95.19
211.76.87.252

Destover “WindowsUpdateTracing” real C&C IP addresses (after XOR translation). Addresses in red are inferred
from pDNS only (no sample).

1.202.129.201
110.78.165.32
113.10.158.4
124.81.92.85
140.134.23.140
196.36.64.50
199.83.230.236
201.22.95.127
202.9.100.206
185.20.218.28
200.55.243.150
122.179.175.224
124.123.219.216
108.166.93.13
14.141.129.116

Destover “RandomDomain” C&C IP addresses:

103.233.121.22
187.111.14.62
187.54.39.210
206.248.59.124
37.34.176.14
94.199.145.55

213.42.82.243
31.210.53.11
59.125.119.135
59.125.62.35
61.91.100.211
62.141.29.175
65.117.146.5
71.40.211.3
85.112.29.106
91.183.41.5
93.157.14.154

217.128.80.228
58.137.122.226
2.224.202.27
14.2.240.20
59.125.75.217
41.38.151.7
201.203.27.170
64.206.243.35
184.180.159.183
24.77.32.241
64.228.222.61
217.8.95.250
180.26.59.158
41.41.29.214

200.202.169.103
202.152.17.116
203.131.210.247

Destover “Duuzer” C&C IP addresses:

110.77.140.155
113.160.112.125
114.143.184.19
148.238.251.30
161.139.39.234
161.246.14.35
175.111.4.4
177.0.154.88
177.19.132.216
177.52.193.198
184.173.254.54
185.20.218.28
185.30.198.1
185.81.99.17
186.167.17.115
194.165.149.51
196.202.33.106
200.87.126.117
201.163.208.37
202.39.254.231

Destover “BasicHwp” C&C IP addresses:

91.183.71.18
184.20.197.204
208.87.77.153
201.216.206.49
87.101.243.252
208.69.30.151
69.54.32.30

203.113.122.163
203.115.13.105
203.170.66.206
210.211.124.229
223.255.129.230
31.210.54.14
37.148.208.67
37.58.148.34
41.21.201.107
41.76.46.182
5.22.140.93
62.0.79.45
67.229.173.226
78.38.114.213
87.101.243.246
90.80.152.49
203.132.205.250
59.90.208.171
201.25.189.114

Destover “Volgmer2” C&C IP addresses:

121.170.194.185
222.236.46.5

APPENDIX: YARA RULES

rule Destover : Backdoor
{

meta:
author = "Blue Coat Systems, Inc."
info = "Used for attacks on Sony Pictures Entertainment and targets in South Korea"

strings:
$al= "recdiscm32.exe"
$a2= "taskhosts64.exe"
$a3= "taskchgl6.exe"
$ad4= "rdpshellex32.exe"
$a5 ="mobsynclmé4.exe"
$ab ="comon32.exe"
$a7 ="diskpartmgl6.exe"
$a8 ="dpnsvrl6.exe"
$a9 ="expandmn32.exe"
$al0="hwrcompsvc64.exe"
$al2="cmd.exe /c wmic.exe /node:\"%s\" /user:\"%s\" /password:\"$%$s\" PROCESS CALL CREATE \"$%s\" > %s"
$al3="4#99E2428CCA4309C68AAF8C616EF3306582A64513E55C786A864BC83DAFEOC78585B692047273B0E55275102C66"
$al4="b8ac0905cda0360fc115£614119da76d84e2277762bd7558b2650a79013fb50138£732d5a03730d7d5b17"
$al5="b076e0580463a202bad74cb9clb85af3fb4dlbe513cccal3ae8b57d193be77b4ab63802b3216d3a80b0082"
$al6="bc9b75a31177587245305cd418b8df78652d1c03e9dalcfc910d6d38ee4191d40bd51483321ebed4595£7"
$al7="b50a338264226b6d57c1936d9db140ba74a28930270a083353645a9b518661f4fceal60d73469b8beabcl"
$al8="b59d165982e3d5721c4d40195f85aedf2al2d6616bella2cl9fall821604edc4675bdcadfIb9cbfb27244"
$al9="e4004c1£94182000103d883a448b3f802ce4b44a83301270002¢20d0321cfd0011lccef784c26a400£43df"
Sbl = " End 1A
$b2 = "WaitRecv End" wide

condition:
any of ($a*) or all of ($b*)

}

rule Destover2 : Backdoor

{

meta:

author = "Blue Coat Systems, Inc."

info = "Used for attacks on Sony Pictures Entertainment and targets in South Korea"
strings:

$al = "%sd.e%sc" fullword ascii wide

$a2 = "xe" fullword ascii wide

$a3 = "cm" fullword ascii wide

$bl = "%smd.e%sc" fullword ascii wide

$cl = "%sm¥se%sc" fullword ascii wide

$d = "ChfTime Success" ascii wide

$e = {FF152?2?2?222226A3EFF752?FF15222222225985C0598D852?222222250FF75226822222?222682222?222275}
SE "$s \"%s > $s 2>&1\"" ascii wide

condition:

all of (Sa*) or ($bl and $a2) or ($cl and $a2) or $d or Se or S$f
}

rule DarkSeoul Obf ChopString : Backdoor
{
meta:
author = "Blue Coat Systems, Inc."
info = "Obfuscation method used by the DarkSeoul group"
strings:

condition:
any of them

rule DarkSeoul Obf BCSUB : Backdoor
{
meta:
author = "Blue Coat Systems, Inc."
info = "Obfuscation method used by the DarkSeoul group"
strings:
$al="pM[XpSZJ[JC{"
condition:
any of them
}

rule DarkSeoul Obf XORA7 : Backdoor
{
meta:
author = "Blue Coat Systems, Inc."
info = "Obfuscation method used by the DarkSeoul group"
strings:
$al={E0C2D3F7D5C8C4E6C3C3D5C2D4D4 }
condition:
any of them

rule DarkSeoul Obf Caracachs : Backdoor

{

meta:

author = "Blue Coat Systems, Inc."

info = "Obfuscation method used by the DarkSeoul group"
strings:

$al={F3EEAEFFFBB821BF9AE3D820FDCO}
condition:

any of them

rule DarkSeoul Keystrings : Backdoor

{

meta:

author = "Blue Coat Systems, Inc."

info = "Encryption keys used by the DarkSeoul group"
strings:

$al = "Bbl02@jH4$t3hg%6&Gls*2J3gCNwVr*Uel!Dr3hytg CHGE%ion"

Sa2 "BAISEO%$2fas9vQsfvxss"

$a3 = "A39405WKELsdfirpsdLDPskDORkKbLRTP12330@35223%!"
condition:

any of them

rule Joanap
{

meta:

author = "Blue Coat Systems, Inc."

info = "SMB worm family used by the DarkSeoul group"
strings:

$al="NTLMSSP"

$a2="MiniDumpWriteDump"

$a3="password <=14"

$ad4="KGS!e#s$5"

$b1="9025jhdho39ehe2"

$b2="y@s!11yid60u7£!070u74n001"

$b3="yOuar3@s!1lyid!07,0u74n60u7£001"
condition:

all of ($a*) or any of ($b*)

	executive summary
	Introduction
	Malware known to be connected with the Sony case
	A note about The Hangul Word Processor (*.HWP, HWPX) format
	Malware Archeology

	Timeline of likely darkseoul-related attacks
	the KorDllbot backdoor family
	The MicrosoftCodeSigningPCA certificate cluster
	KorDllbot-related SMB worms
	The Joanap/Brambul worm family

	The Dozer (aka 7.7 DDOS) Attack
	The Koredos (aka 3.4 DDOS) attack
	The joongang ilbo Attack
	The Darkseoul (aka 3.20 or Jokra) Attack
	The Korhigh malware
	NOV 2014: Sony attack destover backdoor samples are based on kordllbot
	Other possibly related malware activity
	The Castov and castdos campaigns (aka 6.25 ddos attacks)
	The Kimsuky system
	The BlackMine system

	Conclusion
	Works Cited
	Appendix: technical details
	THE JOANAP FAMILY
	joanap.A backdoor, Jan 2009
	joanap.b worm, OCT 2009
	joanap.b downloaded backdoor, SEP 2009
	joanap.C backdoor, JUL 2010
	joanap.d backdoor, JUL 2011
	joanap.e worm, AUG-sep 2011
	joanap.F worm, Mar 2012
	joanap.G worm, OCt 2014
	joanap.H worms, OCt 2014-jan 2015

	THE destover FAMILY
	Destover “b076e058” backdoors, Feb-June 2014.
	Destover “volgmer” backdoors, MAR-Sept 2014
	Destover “Windowsupdatetracing” backdoors, Sept-Oct 2014
	Destover “Messagethread” backdoors, may 2014-mar 2015
	Destover “b8ac0905” backdoor, MAR 2015
	Destover “b59d1659” backdoor, Apr 2015
	Destover “RANDOMDOMAIN” backdoors, mar-APR 2015. Version C Jan 2016
	Destover “duuzer” backdoors, mar-OCT 2015 , JAN 2016
	Destover “e4004c1f” backdoor, JUL-SEP 2015
	Destover “basichwp” backdoor, SEP 2015
	Destover “Formboundary” backdoor, nov 2015
	Destover “VOLgmer2” backdoor, jan 2016

	Appendix: Algorithms and other indicators
	APPENDIX: The MicrosoftCodeSigningPCA self-signed sample cluster
	APPENDIX: Malware hashes
	APPENDIX: C&C DATA
	APPENDIX: YARA rules

