
Maui ransomware
Threat report

Silas Cutler, Principal Reverse Engineer
06/07/2022

Maui ransomware
THREAT REPORT

Table of contents
Technical overview 3

Encryption 4
Hard-coded public key 5
Runtime keys 6
File encryption 6

Appendix 8
PoC key extractor 8

YARA rules 9

Files 10

2 060722

Maui ransomware
THREAT REPORT

As ransomware has grown to epidemic proportions, the ecosystems of Ransomware-as-a-Service
(RaaS) gangs such as Conti, LockBit, and BlackCat have become broadly recognizable. Outside of that
ecosystem, there are other ransomware families that often receive less attention, yet are important to
study because they can help broaden our understanding of the ways threat actors may conduct
extortion operations.

In June 2022, the Stairwell research team investigated one of these lesser-known families, the Maui
ransomware. Maui stood out to us because of a lack of several key features we commonly see with
tooling from RaaS providers, such as an embedded ransom note to provide recovery instructions or
automated means of transmitting encryption keys to attackers. Instead, we believe that Maui is
manually operated, in which operators will specify which files to encrypt when executing it and then
exfiltrate the resulting runtime artifacts.

There are many aspects to Maui ransomware that are unknown, including usage context. The following
report will provide a technical overview of the Maui ransomware; our goal with the publication of our
findings is to raise awareness of this ransomware and provide a starting point for other researchers.

Technical overview
The earliest identified copy of Maui (SHA256 hash:
5b7ecf7e9d0715f1122baf4ce745c5fcd769dee48150616753fec4d6da16e99e) was first collected
by Stairwell’s inception platform on 3 April 2022. All identified copies of Maui (as of this report) have
shared a compilation timestamp of 15 April 2021 04:36:00 UTC. Based on overlapping compilation
timestamps and error messages, it is believed that Maui is configured using an unidentified external
builder.

Maui is believed to be designed for manual execution by attackers. When executed at the command line
without any arguments, Maui prints usage information, detailing supported command-line parameters
(shown in Figure 1). The only required argument is a folder path, which Maui will parse and encrypt
identified files.

Usage: maui [-ptx] [PATH]
Options:
-p dir: Set Log Directory (Default: Current Directory)
-t n: Set Thread Count (Default: 1)
-x: Self Melt (Default: No)

Figure 1: Maui command line usage details

3 060722

Maui ransomware
THREAT REPORT

Embedded usage instructions and the assessed use of a builder is common when there is an
operational separation between developers and users of a malware family. The Stairwell research team
has not identified any public offerings for Maui and assesses that it is likely privately developed.

Encryption
Instead of relying upon external infrastructure to receive encryption keys, Maui creates three files in the
same directory it was executed from (unless a custom log directory is passed using the -p command
line argument) containing the results of its execution. These files are likely exfiltrated by Maui operators
and processed by private tooling to generate associated decryption tooling. A description of each of
these files is provided below:

File Name Description

maui.evd RSA private key generated at runtime, encrypted using hard-coded
public key

maui.key RSA public key generated at runtime, encoded using XOR key generated
from hard drive information

maui.log Log file containing output console output from execution
Table 1: Files generated by Maui

The strategy used in Maui for encrypting files can be logically divided into three layers, similar to Conti
(2021)1 and ShiOne (2022).2

At the inner layer, files are encrypted using Advanced Encryption Standard (AES) with a unique 16-byte
key for each file. Corresponding AES keys are RSA (Rivest–Shamir–Adleman) encrypted using a keypair
generated the first time Maui is run (referred to hereafter as the runtime RSA keys). This key pair
represents the second layer of encryption and, unless Maui is run under different conditions, will be
unique to each system. At the final layer, runtime RSA keys are encrypted, using a different, hard-coded
RSA public key (stored at the end of the Maui executable).

From the limited number of observed samples, it is unclear if this hard-coded public key is unique to
campaigns, targeted networks, or individual operators.

2 https://blog.malwarebytes.com/threat-analysis/2018/02/encryption-101-shione-ransomware-case-study/
1 https://assets.sentinelone.com/sentinellabs/conti-ransomware-unpacked

4 060722

https://blog.malwarebytes.com/threat-analysis/2018/02/encryption-101-shione-ransomware-case-study/
https://assets.sentinelone.com/sentinellabs/conti-ransomware-unpacked

Maui ransomware
THREAT REPORT

Hard-coded public key
At the start of execution, Maui will load an RSA public key stored at the end of itself on disk. This key is
stored in a format (shown in Figure 2) designed to allow for safe programmatic retrieval.

000bedf0: 0000 0000 0000 0000 0000 0000 0000 0000
000bee00: 3081 9f30 0d06 092a 8648 86f7 0d01 0101 0..0...*.H......
000bee10: 0500 0381 8d00 3081 8902 8181 00b9 08930.........
000bee20: 47b1 444e 7caa 2627 6d01 dd0a b82d 91b0 G.DN|.&'m....-..
000bee30: e980 04e2 2a45 163c 555a 5dff 6761 74fd*E.<UZ].gat.
000bee40: dc86 978a fa81 bf73 3ce1 7d38 d540 c615s<.}8.@..
000bee50: 63f3 a5e1 eaa1 cf3c ab43 bbef ed7c 569e c......<.C...|V.
000bee60: 9992 3b46 0959 843e 9ae5 a8e4 5e8c a01f ..;F.Y.>....^...
000bee70: 5c64 6e68 209d 7d74 8d7e 59e0 ac4b 618f \dnh .}t.~Y..Ka.
000bee80: 8c7d a141 e5ed 5427 1512 e7fd b307 56a6 .}.A..T'......V.
000bee90: 9031 d05a 81fc 1a80 2bb6 bacc 9502 0301 .1.Z....+.......
000beea0: 0001 4b42 5550 0100 0000 a200 0000 ..KBUP........

Key:
RSA Public Key - 3081 0001
PUBK Sentinel - 4b42 5550
Key version - 0100

Figure 2: Public key stored in the last bytes of Maui on disk

Using fseek(), Maui will read the last twelve bytes of itself from disk, verify the resulting first 4 bytes
contain the static value of PUBK, followed by a number one, denoting the key version. If both of these
checks pass, the 162-bytes preceding the PUBK sentinel are read, containing the public key. If these
checks fail, a corresponding error message will be presented; the error message in Figure 3
corresponds to when the PUBK sentinel is not present.

Figure 3: Error message presented if Maui’s embedded key is not found

A proof-of-concept (POC) Python implementation of this key loading process is included in the
Appendix of this report. This tool may also be useful for researchers for tracking public keys used in
copies of Maui.

5 060722

Maui ransomware
THREAT REPORT

Runtime keys
Following extraction of the hard-coded RSA public key, Maui generates a new keypair using
RSA_generate_key(). The resulting private key is then encrypted using the hard-coded public key
and written to a file named maui.evd. Based on debug messages (shown in figure 4), the developers
describe maui.evd as an evidence file.

Figure 4: Error messages referring to maui.evd as an evidence file

The corresponding public key is encoded using a 16-byte XOR key, generated using information about
\\.\PhysicalDrive0, and written to a file named maui.key. XOR encoding was likely chosen for this
file instead of RSA encryption to support key reuse if Maui is run multiple times on a target system.

File encryption
Files are encrypted by Maui using Advanced Encryption Standard (AES) in CBC mode using a 32-byte
key generated per file. Keys are prefixed by the hard-coded string dogd, followed by 28 bytes
generated using RAND_bytes().3

Each file encrypted by Maui contains a custom header, allowing the malware to programmatically
identify already encrypted files. This header includes the file’s original path and an encrypted copy of
the AES key (encrypted using the runtime RSA public key). An example of this header is defined in the
figure below.

00000000: 5450 5243 0100 0000 5500 7300 6500 7200 TPRC....U.s.e.r.
00000010: 5c00 4400 6500 7300 6b00 7400 6f00 7000 \.D.e.s.k.t.o.p.
00000020: 5c00 4900 4400 4100 2000 5000 7200 6f00 \.I.D.A. .P.r.o.
00000030: 2000 2800 3300 3200 2d00 6200 6900 7400 .(.3.2.-.b.i.t.
00000040: 2900 2e00 6c00 6e00 6b00 0000 a303 0000)...l.n.k.......
00000050: 0000 0000 47d9 7e5f 1552 56c4 f743 28d5G.~_.RV..C(.
00000060: 79e0 ccb8 fc9b e021 48b5 cd67 5223 b027 y......!H..gR#.'
...
000000c0: fa9e a110 096f 26f9 ecc1 5f70 71fd 13dao&..._pq...
000000d0: fa88 1894 fa96 ca88 2f41 771f 7570 a4d1/Aw.up..
000000e0: 5587 6440 83f6 222d 3a38 f42b d1d6 2d4c U.d@.."-:8.+..-L
...

3 https://www.openssl.org/docs/man1.1.1/man3/RAND_bytes.html

6 060722

https://www.openssl.org/docs/man1.1.1/man3/RAND_bytes.html

Maui ransomware
THREAT REPORT

Key:
Custom Header = 5450 5243
Static value = 0100 0000
Original File Path = 5500 ...
Encrypted AES Key = 47d9 - 1894
Encrypted file = fa96 - [EOF]

Figure 5: Mail Encrypted file header

While Maui is encrypting files, it outputs status information back to operators, as can be seen in Figure
6.

Figure 6: Command line output during execution

7 060722

Maui ransomware
THREAT REPORT

Appendix

PoC key extractor
The following Python script can be used to extract public RSA keys stored in copies of Maui.

#!/usr/bin/env python3
Author: Silas Cutler (silas@stairwell.com)
Desc: Maui public key extractor

import os
import sys
from Crypto.PublicKey import RSA

def parse_key(inkey):
keyPub = RSA.importKey(inkey)
print(keyPub.exportKey().decode('utf-8'))

def main():
with open(sys.argv[1], 'rb') as fhandle:

Read first 12-bytes containing headers
fhandle.seek(-12, os.SEEK_END)

#Check config PUBK header
if fhandle.read(4) == b'KBUP':

print(" [D] Found PUBK sentinel")
else:

print(" [X] Missing PUBK sentinel")
return False

Check pub key version
if fhandle.read(1) == b'\x01':

print(" [D] Found pub key version")
else:

print(" [X] Invalid pub key version")
return False

Extract Pub Key
fhandle.seek(-174, os.SEEK_END)
rsakey = fhandle.read(162)
parse_key(rsakey)

if __name__ == "__main__":
main()

8 060722

Maui ransomware
THREAT REPORT

YARA rules
Stairwell's Inception platform users already have access to associated YARA rules automatically.

rule MauiRansomware
{

meta:
author= "Silas Cutler (Silas@Stairwell.com)"
description = "Detection for Maui Ransomware"
version = "0.1"

strings:
$ = "Unable to read public key info." wide
$ = "it by <Godhead> using -maui option." wide
$ = "Incompatible public key version." wide
$ = "maui.key" wide
$ = "maui.evd" wide
$ = "Unable to encrypt private key" wide
$ = "Unable to create evidence file" wide
$ = "PROCESS_GOINGON[%d%% / %d%%]: %s" wide
$ = "demigod.key" wide
$ = "Usage: maui [-ptx] [PATH]" wide
$ = "-p dir: Set Log Directory (Default: Current Directory)" wide
$ = "-t n: Set Thread Count (Default: 1)" wide
$ = "-x: Self Melt (Default: No)" wide

// File header loading (x32-bit)
$ = { 44 24 24 44 49 56 45 ?? 44 24 28 01 00 00 00 ?? 44 24 2C 10 00 00 00 }
$ = { 44 4F 47 44 ?? ?? 04 01 00 00 00 }

condition:
3 of them or
(

uint32(filesize-8) == 0x00000001 and
uint32(filesize-12) == 0x5055424B

)
}

9 060722

Maui ransomware
THREAT REPORT

Files
File Name File Type Size Sha256 Hash

proc.exe Windows portable
executable

764K 45d8ac1ac692d6bb0fe776620371fca0
2b60cac8db23c4cc7ab5df262da42b78

aui.exe Windows portable
executable

764K 5b7ecf7e9d0715f1122baf4ce745c5fc
d769dee48150616753fec4d6da16e99e

Maui.exe Windows portable
executable

764K 830207029d83fd46a4a89cd623103ba2
321b866428aa04360376e6a390063570

10 060722

Maui ransomware
THREAT REPORT

For more information on the intelligence provided in this report,
contact us at threatresearch@stairwell.com

Stairwell helps organizations take back the cybersecurity high ground with solutions that attackers can't evade. Its Inception
platform empowers security teams to outsmart any attacker by providing continuous contextual threat analysis, detection, and
response. The Inception platform is used by a number of Fortune 500 companies. Stairwell is comprised of security industry
leaders and engineers from Google and is backed by Sequoia Capital, Accel, and Gradient Ventures. stairwell.com

11 060722

mailto:intel@stairwell.com
http://stairwell.com

